American Cinematographer

January 1930
25 Cents a Copy

Paul Whiteman

A Publication for Professionals and Amateurs
Hearty and sincere are our wishes for a Prosperous 1930 and the years to come!

SMITH & ALLER, Inc.

DU PONT-PATHE FILM MFG. CORP.

"A comparative test will convince"
AMERICAN CINEMATOGRAPHER

January, 1930

Vol. X No. 10

CONTENTS

Page

Principles and Processes of Photography in Natural Colors, by Glenn E. Matthews 3

The Early History of Wide Films, by Carl Louis Gregory 5

The King of Jazz, by Hal Hall 6

Photographic Control in Variable Density Recording, by Wesley C. Miller 7

In Africa With Trader Horn, by William Stull, A. S. C. 9

"50-50", by Harry Lang 10

New Fearless Silent Camera 11

As the Editor Sees It 12

1930 and the A. S. C., by John F. Seitz 14

"Hell's Angels" Completed 16

Oscar Depue Designs New Combination Printer, by D. J. Goff 20

Professional Amateurs, by William Stull, A. S. C. 38

FOREIGN REPRESENTATIVES

Georges Benoit, c-o Louis Verande, 12 rue d'AGuessau Paris, 8e
John Dore, Paramount News, Paramount Building, 1 Rue Meyerbeer, Paris IXe, France.
Chicago Office, 3668 South Michigan Ave.—Telephone: Boulevard 5444. D. J. Goff, Representative.

Published Monthly by THE AMERICAN SOCIETY OF CINEMATOGRAPHERS, INC., Hollywood, Calif.
Established 1918. Advertising Rates on Application. Subscription: United States, $3.00 a year; Canada, $3.50 a year; Foreign, $4.00 a year; single copies 25c. Telephone GRanite 4274.
(Copyright, 1929, by the American Society of Cinematographers, Inc.)
CAMERAMEN, ATTENTION!

WOULD you be interested in having a well-established personal representative, with the finest contacts in Hollywood, acting as your personal agent?

ONLY TEN Cinematographers in the profession will be handled by this representative.

TEN . . . AND NO MORE.

If you are interested
WRITE TO
Drawer 9
AMERICAN CINEMATOGRAPHER
1222 Guaranty Building, Hollywood, Calif.
PRINCIPLES AND PROCESSES OF PHOTOGRAPHY IN NATURAL COLORS

An Interesting and Instructive Discussion of Color in Photography

By Glenn E. Matthews

Kodak Research Laboratories, Rochester, N. Y.

This article, reprinted from the 1930 edition of the American Annual of Photography, will be printed in two installments. The next will be in the February issue.—Editor's Note.

MANY hundreds of color processes have been patented and some few placed on the market since May, 1861, when Maxwell demonstrated the first process of color photography. Only three of these processes, however, have withstood the test of over twenty years of continuous use, namely, three-color lithography, three-color carbon transfer, and the Autochrome screen plate process. On the other hand, during this same half century ordinary photography has become almost indispensable as a recording medium, is extensively used in business advertising, and through the motion pictures constitutes one of our most important forms of entertainment and instruction.

During the years 1928-1929 a renewed interest has been developing in color photography. It has found considerable use in connection with the development of sound motion pictures. A new process of amateur cinematography was announced during the late summer of 1928 which has been employed extensively in 1929. A color roll film and film pack method was exploited in England during the same year and several professional photographers in various parts of the world were specializing in commercial color prints. A staff of workers has been in the field making color transparencies chiefly with the Autochrome process which are reproduced each month in the National Geographic Magazine and other magazines. In view of this increased interest in the subject this article has been prepared to give a short review of the principles underlying the processes of color photography and to describe those processes which have found some practical application.

Color and Its Relation to Light

In the making of a photograph of any subject, light is needed for illumination, a light sensitive material and a camera for recording and making it permanent. The requirements in color photography are similar with certain modifications in order that the final record may be in colors. To better understand the problem, let us examine the known facts about color in relation to light.

Most everyone is somewhat familiar with the subject of radio whereby sounds are changed from a frequency of vibration and wave-length sensitive to the ear to a much higher frequency suitable for broadcasting. Similarly, light may be considered to be when a ray of white light (usually sunlight) is passed through a narrow slit and then either through a prism or through an interference grating (a glass surface ruled with several thousand fine lines to the inch), the light is broken up into a multicolored ribbon or brand known as the visible spectrum (Fig. 1). The normal eye sees this band as an almost infinite number of hues, seven of which Newton distinguished as the most prominent: made up of a series of complex waves of varying frequency, violet, indigo, blue, green, yellow, orange, and red. The light rays producing each minute portion of this band have a definite wave-length, and therefore the color which the normal eye sees may be expressed in terms of a wave-length of about 400 m. (millionth of a millimeter or one-twenty-five millionths of an inch) in the violet to about 700 m. in the red (Fig. 2).

Why Natural Objects Appear Colored

Consider now, three strips of cardboard colored red, green, and blue respectively. To the normal eye the strips will appear to be red, green, and blue when illuminated with white light because they absorb respectively, all other colors of the light falling on them and reflect only these three colors. This pro-
property of absorbing certain components of white light and transmitting or reflecting others is characteristic of all natural objects. When all the white light is absorbed, the object appears black; when all the components of white light are reflected in the same proportion, the object appears white.

When certain dyes are dissolved in water or alcohol, they produce a solution having a color which is characteristic for the particular dye used. It is also possible to obtain a numerical measurement of the light absorption properties of a dye solution by means of certain instruments. When the results are plotted in black-and-white percentage light transmission against the wave-length, a curve is obtained which shows the absorption characteristics of the dye solution. In Fig. 3, the area above the curve represents complete absorption of light and that below the curve shows transmission of light. Since the greatest transmission occurs at 460 m. in the green part of the spectrum, it indicates that this dye gives a green solution.

By choosing only those dyes which transmit certain portions of the spectrum, incorporating these in a solution of gelatin and coating this gelatin-dye solution on the surface of a glass plate, thin sheets of colored gelatin called 'color filters' can be prepared. Such filters have found extensive and valuable use in connection with color photography.

With the aid of one series of color filters called the 'Minus Series,' some very interesting effects may be produced. Consider first, the Minus Blue filter. When this filter is placed in the path of the light from a lantern projector which is illuminating a blue, a green, and a red strip of cardboard, the blue strip appears to be gray or black and the red and green strips look nearly the same as before the filter was used. This is because the filter transmits green and red light, but does not pass any blue light, hence the blue strip appears black. Analogous reasoning holds for a Minus Green or Magenta filter and for a Minus Red or Blue-green filter when the cards are illuminated with light through these respective filters.

What an Ordinary Photograph Is and How It Is Made

Since practically every color process uses a photographic film or plate for recording the tones of the subject, let us examine briefly the characteristic properties of this medium. If we look at a thin section of an unexposed photographic film under the microscope, we find that it consists of two layers, a thin layer of gelatin in which are embedded tiny crystals of silver halides and a much thicker transparent layer which is known as the base or support. These tiny crystals are so
The Early History of Wide Films
Being a Peek into the Past that is Both Interesting and Enlightening
By Carl Louis Gregory

It has been claimed that there is only one standard of measurement which is common to all nations of the earth. That measurement is the width of a piece of standard theatrical size motion picture film. Many persons actively engaged in the industry seem to be unaware that other widths and dimensions of film were ever used and some even believe that the use of wide film is a recent invention.

History moves in cycles and recent events in the use of the wide film of various gauges show that we are in the midst of a repetition of the unstandardized efforts and struggles that marked the work of so many of the early pioneers of the industry.

To those who have never had occasion to refer to the early history of the motion picture it may come as a surprise that scores of scientists, mechanics and inventors in nearly every civilized country were working simultaneously during the “90’s” to perfect a system for taking and showing motion pictures and while they were all, in the main, working along the same lines, yet each adopted whatever width of film seemed to him to be best suited for his experiments.

That the 35 mm. width of film came to be the measurement which survived and eventually became standardized is, so far as the writer has been able to ascertain, a coincidence. It was not foresight that caused Mr. Edison in this country and Lumière in France to select film widths that were so nearly the same that they were practically interchangeable. It was pure chance, also, that these two firms happened to be the most commercially successful in their respective countries.

Edison selected 1½ inches as the width of film best suited for his Kinetoscope only after a long series of experiments with films in cylinders, discs, and narrow ribbon form run horizontally instead of vertically.

This measurement coincides within 1/1000 of an inch with the 35 mm. width selected by Lumière and while Lumière used only one round perforation on each side of the film and Edison used four rectangular ones it was possible by altering sprockets or by perforating the Lumière film to use them interchangeably. Lumière later reluctantly abandoned the two-hole perforation and copied the Edison standard in order to sell film to users of Edison machines.

An advertisement in Hopwood’s “Living Pictures” edition of 1899 offers the “Prestwich” specialties for animated photography—nine different models of cameras and projectors in three sizes for ½-inch, 1½-inch and 2½-inch width of film. Half a dozen other advertisers in the same book offer “cinematographs” for sale and while the illustrations show machines for films obviously of narrow or wide gauge no mention is made of the size of the film.

During 1899 there were in England and on the Continent Autograph films 2½ inches wide. Demeny Chronographophotograph 60 mm. wide. Skladovsky film 65 mm. wide. Prestwich wide film ½-inch wide. Birse films 11/16 inch wide. Juno or Prestwich ½ inch wide, besides the present standard established by Paul, Edison and Lumière.

Henry V. Hopwood in 1899 described more than fifty different models of projectors made by different manufacturers and gives the names of about seventy more. Curiously enough the size of film used in the various machines is mentioned only in two or three instances. It is probable that most of them used the Edison standard although it is obvious from the descriptions that many of them used other sizes.

Probably the first example of motion picture “film” as it is photographed today was a scene taken in the Champs Elysées in Paris in 1886 by Dr. E. J. Marey. Although the “film” was paper, sensitized celluloid not being available until a year or two later, and cine projectors having not yet been invented; this paper negative could be printed as a positive film and run as a Fox Grandeur film today.

In May, 1889, William Friese-Greene, 92, Piccadilly, London, made a motion picture negative of a scene on the Esplanade, Brighton, England, using paper film negative 2½ inches wide and 1½ inches height to each frame. Later in the same year he used celluloid film displacing the paper used earlier.

One of the first to project successfully upon a large sized screen was Mr. Woodville Latham, inventor of the Latham Loop which caused much patent litigation in the early days. Latham called his machine the Eidoloscope and used wide film 2 inches wide with frames ¾-inch high by 1½ inches long.

Oval holes cut through the frame line at each side alternately served to make electrical contact to light the arc each time the intermittent brought the picture to rest. This intermittent lighting of the arc served in place of a shutter but was not very successful as the electrical spring contacts scratched the film and the arc responded irregularly to the quick make and break.

In the fall of 1897 Enoch J. Retor, an inventor and promoter, showed pictures of the Corbett-Fitzsimmons prize fight in the Academy of Music on 14th Street in New York City. His apparatus was called the Veriscope and the same mechanism used to show the pictures was employed in the camera with which 11,000 feet of film were taken at Carson City, Nevada, March 17, 1897. Thereafter about twenty machines for projecting this large size film were manufactured and these fight films were exhibited all over the country.

In the late 90’s the motion picture was regarded as a great novelty which would soon die out. Conditions were chaotic and everyone who went into the business worked with frantick eagerness to reap the rich harvest before the fickle interest of the public should pass on to some new fancy.

Just as there was no standard of film size, no rate of frames per second was established and the taking rate varied from 8 per second to 60 per second among the different systems, each of which was distinguished by some fantastic and polysyllabic name. Out of the hundreds of such coined trade names only a few are remembered today: such as Kinetoscope, Vitagraph, Biograph and Mutoscope.

Subjects were confined almost entirely to news events, prizefights, short scenic shots and theatrical or spectacular bits many of which were considered

(Continued on Page 29)
The King of Jazz

Paul Whiteman Makes a Few Remarks

About The Talking Pictures

By Hal Hall

There is nothing quite so enlightening to one in the picture business as the reaction of a stranger who has suddenly found himself in the midst of a production, especially if the individual is one with a mind as astute as that of Paul Whiteman, the Maestro of Jazz.

Whiteman always has had unusual ideas regarding the show business as a whole, and he does not disappoint in connection with his thoughts about pictures, or talks as they are usually called now. Instead of swelling up with his own importance now that he has been made the star of a picture that will cost probably a couple of million dollars, or more, he declares that he means nothing to the picture and the picture world unless his picture is good and the music is better.

This Jazz King, who is starring with his band in Universal's "King of Jazz Revue," now in production at the Universal studios in Hollywood, has some rather pointed remarks to make regarding pictures and picture making.

Standing out among his remarks are the following:

Talkies have removed the orchestras from the picture houses but these same talkies will put the orchestras right back again within the next two years.

Talkies will do much to develop the love for music among the people wherever they are exhibited, whether in the United States or in foreign countries. And talkies will bring about the end of the four and five piece bands and orchestras that used to hold forth in the theatres in the past.

The talkies are here to stay, but—they will not eliminate the spoken drama or the bands and orchestras. Rather, they will make the people hungry for a sight of the players and musicians they have heard but who have been merely shadows flickering across a screen.

While talkies are here to stay, there should and probably will be some great silent pictures made in the future. Such men as Chaplin should never make a talkie. He is too great a pantomimist.

The art of the cinematographer is so amazing as to make one say it is unbelievable that a man can do so much with a camera and some lights.

The producers threw away the better part of two years development in sound recording by failing to turn immediately to men versed and long experienced in recording music and voice in the great phonograph laboratories.

Whiteman said a lot more as he talked across the lunch table with this writer at Universal's studios, and while we may be no judge of such things, it strikes us that some picture company would be showing excellent judgment if it secured this man Whiteman solely in the capacity of a "horse sense" adviser.

"The name of Paul Whiteman means nothing," he declared, "as far as the success of the picture is concerned—that is unless the picture is a really good one itself. The idea that producers have about big names is more or less a lot of bunk. A big name will never make a success out of a poor picture. It will draw a full house the first night, yes; but if the picture is no good the world will say: 'Isn't that a terrible picture—So and So is in?' And then everyone will stay away from the picture and it will flop all over the lot. That has happened in silent pictures and has already happened in talkies.

"So why should either the star or the producer kid himself into believing something that isn't so. Personally, I believe our picture is going to be an excellent one. The sound is simply marvelous, the action is good. The dialogue is good. The music reproduces magnificently. And the photography is simply gorgeous. Hal Mohr certainly knows cinematography and lighting. It is amazing the results he gets. I would not have believed that a man with lights and a camera could do the things he does. It seems to me that the cinematographers are not given sufficient prominence for the really wonderful work that they do in making pictures successful.

"Getting to talkies and music, let me say that I think talkies will do much for music. The people of the world have been music hungry for years. They have flocked miles to hear bands and orchestras. I have toured the entire United States and played in practically every town of any size and people simply flocked in. They want music. Why, down in Texas, it took me six weeks before I could leave the state, and you know how scattered the towns down there.

"Abroad it is the same way. They want music. They will pay a lot to hear it. Now with the motion picture giving them this music it will simply cultivate their taste for it. But—they will not be satisfied with the pictures and music given in that way alone. They will want to see the bands. For that reason I say that within two years you will see the bands and orchestras back in the picture houses again. The talkies drove them out, but will make the people so much loving that they will have to put the bands back.

"And—I think that pictures with music will make the people demand big bands and good bands. They won't stand for four and five piece affairs again. They will be educated up to the big band with class. And watch big bands come back to the theatres. A good band can make a house pay even if the picture is bad. Big theatre chains have been built up by music. It will be done again. But people will not be satisfied with canned music alone. Never think that. Pictures are here to stay, and they will be mostly talkies, but people want human beings to look at after a certain time.

"Recording is just beginning to get into its stride in the picture business. But the producers wasted the better part of two years of development by not bringing out men long experienced in recording in the big phonograph laboratories. Why, it seems unbelievable to me, but it is a fact, that picture people thought they did not need men who knew a thing about recording. The result was terrible at first. Everyone knows that. But, gradually the knowledge was gained at much expense, and now there should be some good recording. I cannot understand why the producers failed to bring in the recording men, however.

"You might not believe it, but one big producing genius was preparing to build a couple of huge sound stages. I was talking with him and started to tell him about the experience I had had in building a sound recording laboratory. I knew he was making a mistake. He just laughed at me and asked me if I knew more than the electrical engineers who were laying out the place. I laughed, too, and said I didn't. But nearly a quarter of a million dollars was wasted in those stages and they had to be changed. A man versed in recording could have avoided that."

Whiteman laughed heartily when he recalled that experience and then declared that at Universal they are really doing wonders in recording.

"They are getting results here," he declared, "marvelous results.

Whiteman declares that the so-called jazz of today is really the American music. He points out that it is America's contribution to the field of music, and a good contribution. Too.

The classical music, he points out, has come from Europe, but America has developed the popular or jazz music which has been a firm hold in Europe. Pictures, he declares, will implant this American music more firmly in all parts of the world. "I think we have only begun in pictures," he declares. "When recording is improved and we really get in stride the advance will be remarkable."

(Continued on Page 48)
PHOTOGRAPHIC CONTROL IN VARIABLE DENSITY RECORDING

A Paper Included in the Technical Digest of the Academy of Motion Picture Arts and Sciences

By Wesley C. Miller
Chief Transmission Engineer, Metro-Goldwyn-Mayer Studios

SOUND reproduction presents three basic problems. First, the original sound must be picked up by some device—a microphone. Later, sound must be re-created by a loud speaker or its equivalent in such a manner as to reach a listener as a good substitute for the original. In between are all of the steps of amplification and recording, involving various kinds of energy conversions. The entire philosophy of the process is based upon the attempt to keep the results of each step strictly proportional to the original. In cases where this is not entirely practicable, correction may be made in one step for some unavoidable distortion introduced by another.

For the purpose of a photographic analysis of variable density recording and reproducing, suppose we modify this fundamental division and use that shown in Fig. 1. Up to the point of exposing the sound negative we can maintain good proportionality with the original sound. Also, from the time the sound positive produces electrical variations which later are converted to sound, we can maintain similarly good proportionality. But if the same condition fails to exist in the photographic part of the process, our overall result suffers. Let us then state the photographic problem thus—the transmission of a sound positive must be strictly proportional to the original negative exposure which it represents.

Any technical process has certain limitations. Recognition of them is an incentive to remove them or to decrease their effect. In any case, to determine them and to work within them is good engineering. The author's intimate contact with heavy production using the light valve variable density method since the beginning of commercial work with it has led to certain conclusions in this respect. It is the desire in this article to describe some features of the method and to present a means of analysis which has been found to be of great value in controlling results. The latter is not original in principle. It has, however, the distinct merit of affording a way of stating the problem simply and of readily determining how well practical success has been attained.

The usual means of arriving at the conditions for proportionality in the photographic processes is by reference to the familiar Huerter & Driffield curves for the emulsion used, such as those shown in Fig. 2 plotted between density D, and the logarithm of the exposure E. These curves exhibit the characteristic of having a curved toe in the region of under exposure, a curved shoulder at over exposure, and in between a section which approaches a straight line. The slope of the straight portion determines gamma (y), the contrast factor, which up to a certain point increases with time of development. The intersection of the straight portion extended, with the log E axis, determines the inertia i which is not of immediate interest.

The straight part of the curve may be represented by the equation

\[D = \log \frac{1}{T} = y (\log E - \log i) \]

where \(T \), the transmission, is the ratio of transmitted light to incident light—through the film.

This equation may be written

\[T = kE^y \]

This relation holds for both negative and positive, that is

\[T_n = k_nE_n^y \]
\[T_p = k_pE_p^y \]

where the subscripts n and p apply to negative and positive, respectively. The various k factors are constants.

In printing, the positive exposure is proportional to the negative transmission. hence,

\[E_p = k'T_n \]

From these relations we may determine the overall relation (Continued on Page 18)
In Africa with "Trader Horn"

Top, ready for "Crooks." Center, Clyde DeVinna, chief cinematographer, with his radio set. Bottom, the technical staff.
IN AFRICA WITH TRADER HORN

By William Stull, A.S.C.

THE set designers in Hollywood's studios can, and have, built sets representing almost every lot of things there is and the next, but when the officials of the Metro-Goldwyn-Mayer Studios want their scenes made on the actual locations, they always call for Clyde de Vinna, A.S.C. Few men indeed have received such substantial evidences of executive confidence as Clyde has, for he has been sent, times without number, to remote corners of the earth, far away from studio supervision, at times entirely alone, or even in charge of a company, to bring back vitally important scenes for the studios big productions. His success in this unique field is well attested by the scant time he has been allowed to remain in Hollywood during the past few years. At times he has been fortunate enough to be able to photograph a picture or two in the studio before answering a hurry call to Kamchatka or Zanzibar, but of late even this has been denied him, as he has been assigned the photographic direction of three successive 'specials' filmed entirely for Fox productions.

The first of these three was the superbly beautiful epic 'White Shadows in the South Seas,' which took Clyde and his directorial teammate, W. S. Van Dyke to Tahiti for many months. The success of this picture was so complete that they were immediately rushed back to Polynesia to create Ramon Novarro's 'The Pagan.' Now they have just returned from ten months in darkest Africa where they have battled hardship, wild beasts, and storms to make 'Trader Horn' the outstanding production of 1930.

That it most certainly will be that is the unparalleled prediction of all who have seen the preliminary rushes which have emerged from the crowded cutting rooms. In point of size, novelty, and cost it easily takes place beside the most opulent epics of the silent screen. While the exact amount of the production cost has not as yet been computed, it is known to exceed in cost all of the film's previous pictures, with the single exception of the colossal 'Ben Hur,' which it closely rivals. The magnitude of the undertaking can perhaps be imagined when it is learned that, despite the most skilful management, the bare operating cost of the company while in the field could not be brought below an average of $5,000 per day.

Under these circumstances, the terrific responsibility resting on the shoulders of Director Van Dyke and First Cinematographer de Vinna is painful to imagine. Their success is indicated, however, by the fact that the studio officials are unanimously enthusiastic over the picture, pronouncing it a worthy successor to the same team's 'White Shadows,' and well worth the costly 25,000 mile safari required.

Concerning his own part in the expedition. Mr. de Vinna is modestly reticent, though outspoken in his praise of the other members of the company. "We had a good trip," he says, "and, in spite of all the hardships and trouble we went through, we managed to bring back a pretty good picture." 'We left here,' he continues. "February 4, 1929, and our advance party reached Mombasa upon March 16. We went at once to Nairobi, the principal city of the interior, where we established our base. And right there, our first surprise, for we found Nairobi, in spite of its location in the wilds of Africa, was a fine young city, and an ideal base. By the time the rest of the party joined us, a month later, we had our laboratory installed, and had put through it more than 14,000 feet of film that I had shot for tests, etc., during that month, we'd gotten a couple of cars (all safaris are made by motor nowadays), and we'd been able to scout around that part of the country pretty well, and line up a lot of good locations.

'We'd begun to get an idea of the tricky light conditions we were up against. You see, most of our work was done on the plains, high above sea-level, where the air is so much thinner that although the sunlight beats down plenty hard from above, there is little diffusion, and the shadows are just so many big ink-spots. And down there by the equator we always had to knock off shooting between the hours of ten A.M. and three P.M., because the angle of the sun made a nasty top-light which simply eliminated quality results, and the shimmering heat-waves danced around so that anything but close-ups were impossible. Incidentally, it was usually so hot about that time that nobody could do any work, anyway.

'Still, by the time the rest of the bunch got down there, we'd pretty well gotten used to these photographic conditions, and were all ready to start work in earnest. And work we did, too! We safari-ed all over British East Africa, up into the Uganda, and over into Belgian Congo, making pictures all the while.

"One of a sudden when we were almost half through with the picture, the studio cabled us that as the world was demanding its pictures all-talking, 'Trader Horn' would have to talk too, and so a sound crew was on its way to Africa to join us!"

"Well, the sound men reached us all right, and we found that they had brought everything with them with silenced cameras for us to use. Then the fun began! We had to make talkies, even though we didn't have the proper cameras—and believe it or not, we did it! Our prop man was a wonderful fellow, and he surprised us by breaking out a lot of felt and canvas, and fixing up some surprisingly effective camera covers, so, with them and a few blankets, our two standard Bell & Howells and George Nogle's Akeley did as good service as though they'd been the latest of sound cameras. You can bet we were satisfied with them—until we got back to the studio and started bragging a bit about them. Then we found that they'd sent us off two brand new silent Mitchells five or six months before! They're still trying to find those Mitchells!"

"You can imagine we had to use a lot of such make-shifts out there in the bush, for most of the time we were too far from even our Nairobi base to have anything to rely on but our own wits—and luck. I recall one time when we were on safari, and one camera went to pieces. Van and I were in the lead car, several miles ahead of the others, when suddenly we came upon a lion with a fresh kill—so a scene we specially needed. We stopped the car, and Van hurriedly sent back for the actors, while I got the camera ready. When all was ready to shoot, we found that the refrigerators were still back with the main party—a typical cameraman's 'bad break.'

"Well, there was no time to send back for the things, and we couldn't get on without them, so we hurriedly threw some together. We made two splendid hard' ones out of a couple of gallon gasoline cans—vise me, petrol—tins, hammered out flat on wooden frames made from the crates they were shipped in, and a couple of excellent 'soft' ones (1916 style) out of the sheets on the leading lady's bed. Precious crude make-shifts, I'll admit—but they worked, and we got a scene that might have taken weeks to come otherwise."

"Another make-shift was our own African camera crane. The script called for a scene showing our actors stumbling along in their headlong flight from the cannibals, nearly dying of thirst in the waterless veldt, while the camera is raised straight up to reveal a water-hole directly ahead of them, over a knoll. Of course the scenarist meant well enough when he wrote it, but, after all—he didn't have to shoot it in the middle of Africa! That was our job!"

"When we came to make the scene, we found the location exactly as described but, unhappily, the Devil! The famous camera-crane was busy in Universal City, California, some six thousand miles away from where we very earnestly wanted it. Again we put our heads together, and finally evolved our primitive, but effective, substitute. We set up an ordinary six-foot parallel, and from one side of it we ran a stout crossbar, made of fresh-cut timber, to serve as the axis for our crane. The crane itself was a twenty-foot pole, with a convenient fork at one end.

(Continued on Page 26)
Then Mannie mentioned in detail the morals of Michael V. Bladdich. He referred with startling frankness to certain grand jury memoranda which had very mystifyingly disappeared from the official archives. He went into the matter of Bladdich's private personal habits to an extent that wasn't at all good taste. But then, Mannie wasn't trying to be in good taste, anyway. He was just telling Bladdich what he thought of him.

The letter, in short—although the letter itself wasn't short—was a masterpiece of something or other. It's a wonder—the typewriter didn't melt, and it was certain that the paper must have been an asbestos compound. If anybody in the postal service had ever opened the letter, seventeen postal inspectors would probably have been at Mannie's door the next morning, charging him with sending explosive, incendiary and various other kinds of matter through the mails. When Mannie had it finished, he showed it to Cedric. Cedric blushed.

"What's the matter? Scald your sensibilities?" Mannie asked.

"No—just ashamed of my paltry vocabulary, after that," Cedric explained.

Mannie added a postscript:

"P. S.—And say, you (two lines of bad words), if you want to do anything about this, you'll find me at the President Hotel."

Then he stuck it in an envelope, addressed it to Bladdich, stamped it, gathered his belongings, put on his hat and strode out. At the first mailbox, he mailed it. Then he went to the Journalists' Club and got drunk for three days.

When he came out of it, he was on his back in bed. Some kind soul had put him there; Mannie didn't know who, but then Mannie had done the same for some of the other guys in days gone by, and one good turn deserves another.

"Hey, Smart! ! !" he yelled. He thumped on the floor. From downstairs somewhere came a response:

"Yassuh, Mist' Mannie: Uh huh—comin', sub."

A minute later, and a black head atop a white coat appeared at Mannie's door.

"Smart," begged Mannie: "bring me a bromo and a paper and what time is it?"

"Bout ten, sub?"

"What night?"

"Tuesday mawnin' an' I'm bringin' de bromo an' de mawnin' papuh."

Smart vanished and Mannie realized he'd been non compos mentis since Saturday. He gulped the bromo and cursed it, as usual, for mostly going up his nose. He read the paper foggly until he saw the name of Michael V. Bladdich in large letters.

"FILM EXECUTIVE JAILED."

The headlines announced. There were other heads about embezzlement and morals charges and things like that. There was a picture of Bladdich. And there was a story which Mannie managed to decipher.

(Continued on Page 30)
NEW FEARLESS SILENT CAMERA

Ralph G. Fear Announces a New Professional Camera With Many Startling Features

RALPH G. FEAR, Head of the Fearless Camera Company, formerly the Camera Equipment Co. of Hollywood, an engineer well and favorably known in the Film Industry brings to a culmination years of study and endeavor in the presentation of the New Fearless Silent Camera. Mr. Fear has put into the New Fearless Silent Camera the accumulated scientific and practical knowledge gained through ten years of intimate association with the engineering phases of motion pictures.

"Most of the professional motion picture cameras in common use today," says Mr. Fear, "were designed a dozen or more years ago. As a matter of fact there isn't a professional motion picture camera now in common use in the Studios that was not designed prior to 1920. These cameras were not designed for silence, hence they all develop so much noise that with the advent of talking pictures it became necessary to provide some sort of sound proofing for the cameras in order that they might be used in sound productions. This has resulted in a multitudinous array of booths, blimps, bungalows, blankets, etc. in a vain effort to keep the camera and its noises within an enclosure so that effort in re-designing and re-building, was successful in eliminating practically all the noise in the old cameras. Dozens of these re-built cameras are in use today and no booth or sound-proofing is necessary with their use."

During the entire time that he was re-designing and re-building these old cameras, Mr. Fear was perfecting a new camera designed for the present day conditions.

"A modern motion picture camera," continues Mr. Fear, "should be so silent in operation that it can be used within ten feet of the microphones while photographing sound pictures. Provision should be made within the camera for recording sound on the same film and at the same time that the image is being photographed. It should be extremely easy to focus, retain all of the features in common use before the advent of sound, and in addition should contain all of the modern accouterments that have become necessary attachments with the permanent establishment of talking pictures. It should fill the every need of modern motion picture photography. Such is the 1930 Model Fearless Silent Camera.

"In addition to being so silent in its operation that the microphones may be placed within ten feet of the camera without picking up unwanted noises, the Fearless Silent Camera embodies many new and desirable features. However, it should be stated at this juncture that the Fearless Silent Camera does not contain any radical or untried features. To the contrary, everything that goes into its construction is based on sound engineering principles."

"The Fearless Silent Camera is equipped with the Fearless Simplex High-speed movement of which there are nearly half a hundred in use, several having been installed in Europe. This is the simplest camera movement in the world to thread and due to precision workmanship and accuracy of design is so silent while in motion that only by placing the ear against the frame of the movement can any sound be detected.

"One of the outstanding factors that contribute to the almost unseen silence of the Fearless Silent Camera," says Mr. Fear, "is the full force oiling system that pumps oil under pressure to every bearing point. This system of positive oiling is employed in all high grade automobiles, but this is the first time it has ever been applied to a motion picture camera. The few gears that are used in the Fearless Silent Camera are designed for silent operation and wherever ball bearings are necessary the finest of imported instrument bearings are used.

(Continued on Page 29)
Happy New Year!

A GAIN we are facing the dawn of a New Year. Some of us face it with joyous, eager anticipation; others with fear and trembling. None of us know what the year will hold for us. Of that we are certain.

Somehow I feel that the first of January is different from the first of July or August or February. Just another matter of habit or custom.

However, as it is a time when most of the world makes good, or bad, resolutions and slates are wiped clean for a new start, why not make a resolution that will affect our neighbors and fellow humans? Most of us resolve to do this or that, or not to do this or that—always thinking solely of ourselves. This year let's give the other fellow a thought.

Wouldn't it be a wonderful thing if everybody resolved to do the best work possible each day, to treat others as we wish to be treated, to be kind, cheerful, ambitious, helpful, merciful, charitable! Just imagine what such a resolution would mean—if it were made and kept! Most of us forget the other fellow in the mad scramble of life. We step on him when he is down: think only of self. Let's change this year.

And now that we have had our little say, we wish you all a happy and prosperous New Year!

Glen Kershner

The other morning we had a 7 o'clock breakfast appointment with Glen Kershner, the genial gentleman whose present column of thoughts in this publication is attracting attention far and near. Now, there is usually nothing very unusual about a breakfast appointment with a cartoonist. But Kershner is not the usual type of cartoonist: so there is the point that makes this writer burst forth with this pseudo literary effort.

Arriving in front of Henry's famous restaurant, the writer thought for a moment that a nomadic gypsy must have stopped there for breakfast, for a car was parked by the curb and in it were the following: one bass violin, one artist's easel, one set of golf clubs, one motion picture camera, one flute, a box of oil paints and a drawing board. The drawing board was perched on the knees of Kershner who was busily putting the finishing touches on the cartoon that appears on the opposite page of this magazine.

This man Kershner was on the way to First National Studios where he was photographing a picture. But he had the bass fiddle with him because he was going to play with some Symphony orchestra in Los Angeles that night. He hoped he could finish work at the studio in time to do nine holes of golf, and in case anything happened so he would have more spare time he had his paints along to finish a picture he had started. Meanwhile he was doing the cartoon while waiting for breakfast.

The peculiar thing about Kershner is that he does everything well. And he plays the piano—oh, well, here's the point! Next month's issue of this magazine will contain a feature story about Kershner, done by this writer himself—and if Glen doesn't give us a drawing showing how he looks to himself, we'll put broken glass in his bass fiddle.

Excuse Us, Please

NOW and then an error will creep into any publication. We are particularly pleased over the absence of them in this publication. However, they happen. But we will say that we make a real one when it does take place.

So, we wish to beg the pardon of T. E. Finegan, head of the Eastman Teaching Films, Inc. In the November issue we mention the Corporation of the Eastman Teaching Films as head of the organization. Mr. Cowling wrote us about it, but his letter came too late to stop the second error in the December issue when we announced the addition of Mr. Cowling to the editorial staff of the magazine and again called him head of Eastman Teaching Films. Now we wish to say that it is Dr. Finegan who is head of this organization, and in our next issue we will have a story about his work that should be of interest to all our readers . . . the Editor.

The Hollywood Mind

AND now another "author-critic" rises to say a few un-gentlemanly things about the motion picture people of Hollywood. This time it is Benjamin De Casseres, and his pen or pencil or typewriter must have scarched as he wrote his thoughts.

Mr. De Casseres in part says: "There is something Silurian and pre-Devonian in the set, deeply incrusted and unmanageable quality of the motion picture mind. When movement does take place the causes must be sought for externally in so many great catastrophe in the box office. It has no internal principle of movement such as governing for the real reinders that nightly draw. This is the reason that the Hollywood mind is precisely today what it was in 1914. It cannot change. What seems so is mechanical movement caused by a series of external shocks. Oh, what a piece of work is this Hollywood mind! How ant-like in reason! How infinite pre-established vacuity! In action, how like a jazz band! In apprehension, how like a blotted! The Publicity Beauty of the world! The paragon of the tabloid bean! And all its learning might be bounded in a peanut shell!"

Well, well. And then three bad eggs: for they would not create an odor quite so distasteful as Mr. Casseres's remarks.

Really, it is a peculiar thing how critics and authors strike out at Hollywood and its people with all the vitriolic power they possess. And then, isn't it funny to watch the critics and authors grab onto the fountain pen and sign their names to the contracts in these feverish minds of Hollywood and sometimes offer them pieces of change for an idea! And then, oh, so often, it turns out that the critic or author has no ideas. The whistle toots and the bell rings on the Santa Fe Chief and another author or critic is headed Eastward again while one of the ant-like Hollywood minds tries to salvage a little something from the garble of words that said traveler's typewriter has turned out.

It does seem peculiar how America leads the motion picture world; how such pictures as "Seventh Heaven." Four Sons. "The Big Parade" and a lot of others ever came to the screen. with ant-like minds behind them. However, scientists tell us that an ant is the strongest creature in the world, comparatively—so perhaps Hollywood will manage to struggle along.

Westerns Again

Not less a person than Jesse L. Lasky asserts that the old time western picture will be brought back to the screen by the advent of the talkies. Three cheers for Mr. Lasky!

Somehow or other, there never was a picture that sent men away from the theatre with blood tingling quite as did the westerns. They were very manly, very heroic, very of the people. "Do you remember the thrills you used to get from reading the old nickle novels of adventure on the plains? Sure you do! And now, according to Mr. Lasky, the westerns will be better than before because they will have better constructed stories. That is also good news. More power to the producers who give us the hard riding heroes of the days that used to be.

California

HEIGH HO! As we write coming to the office this morning it was so warm we had to use a lot of will power to keep from doffing the coat and walking in our shirt sleeves. And then we picked up the paper and saw where even the racketeers in Chicago had been snowed under and beautiful white drifts of snow were piling places four to five feet deep. We threw open the windows, gave some fresh water to the roses we had picked in our back yard and decided that we could kiss the man who gave us the yen for California and would not be effeminate, either.

And then Don Thomas of the All-Year Club of Southern California thought for a moment that we might have (count them yourself) had visited California in the first eleven months of 1929. We don't blame them! There should have been a million, and all should be here for Christmas and see Hollywood Boulevard lighted up with decorated Christmas trees. Top coats still in the manner of the sun-tanned youngsters laughingly prancing along the street waiting for the handsomely draped ladies to carefully draw. It is for this a beautiful movie star—down the street. We are not boasting—we are just saying we are lucky to be here.
1930 AND THE A.S.C.

By John F. Seitz
President of The American Society of Cinematographers

As President of the American Society of Cinematographers, I take this opportunity of wishing a happy and prosperous New Year to every member of this organization; to the readers and supporters of our magazine, The American Cinematographer, and to our countless friends scattered throughout the world.

The year 1929 has been an eventful one in the motion picture industry. Changes have taken place and developments have been so rapid that it almost takes one's breath away to try to realize all that has happened. It has been a prosperous year as well, and the industry should be proud of the 1929 achievements.

The society has prospered to an almost unbelievable extent, and has enjoyed one of the most eventful and outstanding years of its history. Today, as we face the new year, the society stands in an enviable position. Never before has the society been so strongly entrenched. Never before has its future been so promising.

Our magazine, The American Cinematographer, has completed the most successful year of its history and today stands preeminent in its field as the outstanding publication of its kind—a magazine that is awaited eagerly by readers all over the United States and in thirty-six foreign countries. During the past year it has expanded and developed even beyond expectations; and 1930 gives promise of further advancement that will be startling.

The society is now preparing a technical book to be called the Cinematographic Annual. The publishing of this book, I believe, will be one of the biggest contributions of the society for 1930, because it will be a publication that will fill a long felt want. In it we will have information that can be found nowhere else, and prepared by outstanding authorities. I hope and expect this book will be the last word in technical works of its kind and will bring out still more emphatically the efforts of this society to further the interests of cinematography and allied fields of the motion picture industry.

During the coming year the society plans much in an educational way for its members which will have an excellent effect upon the industry. Courses in mathematics, physics and other subjects are being planned, and the society will be well in the van of educational progress.

Throughout the years of the society's existence this organization has always had the advancement of cinematography and cinematographers as one of its chief aims. A glance through the records of the past reveals much in the way of accomplishment. It is the aim now to make the service of the society still more valuable to every member and to the industry; to keep alive and shining our slogan "Loyalty, Progress, Art."

International Institute to Publicize New Films

The International Educational Cinematographic Institute, organ of the League of Nations, is planning to make a regular survey of what has been achieved by the various Nations, with regard to the production of educational, scholastic, documentary or purely recreative films.

To this end, it appeals to all producers and editors of such films, begging them to communicate to the International Institute their own programme of production.

To encourage the creation of such films and make known what is being done in that line, the Institute will dedicate some pages of the International Review of Educational Cinematography to the advertisement of the films which are being prepared, publishing also photographs to illustrate their educational, scientific, scholastic or documentary or technical character. The Review is a monthly publication edited by the Institute. It appears in English, French, German, Italian and Spanish. Thousands of copies are being circulated and it is read by 52 various nations.

In this way, a general propaganda for educational films is being organized by the Institute, which offers in an entirely disinterested way to help the producers of every country. And the final catalogue will eventually be published by the Institute of all films which are deemed to possess a real educational value and will be circulated in every country.

All kinds of information possible, accompanied by the list of titles and by photographs, must be sent to the International Educational Cinematographic Institute: Villa Tortoloni, Via Lazzacchi Spallanzani 1. (Documentation Office.) Rome.

E. R. P. I. Analyzes 75 Theatres Weekly

To increase the acoustic quality of Western Electric wired houses, seventy-five theatres are now being acoustically analyzed every week by the acoustic department of Electrical Research Products under the supervision of S. K. Wolf. In every case where the analysis shows that the theatre is in need of acoustic treatment, a specific acoustic recommendation is made for the treatment of the theatre.

The long period of development work carried on by the acoustic department has enabled the company to make these analyses and recommendations on a strict engineering basis. The work divides itself in two parts. First a complete acoustic survey is made in the theatre by the company's engineers. Written reports of this survey are sent to the acoustic engineers in the home office who analyze these reports to determine the acoustic values of the house, and to draw up recommendations for treatment when needed.

In making the surveys, engineers are required to determine the exact volume and seating capacity, nature and thickness of all surfaces in the theatre, type, thickness and amount of draping and decorating material used in theatre, exact nature of all seats and furniture, etc. It also includes a noise survey and recommendations for eliminating all noises in the house. So complete is this survey, the report covers five pages, and either accurate sketches or architects' drawings must be included in the survey reports.

Pahle at Pathé

Ted Pahle, A. S. C., has left Paramount New York studio and is now in charge of the camera department of Pathé's New York studio.
"ALL QUIET on the WESTERN FRONT"

... Universal Pictures

Out into the Night —
The Cheering —
(from the Projection Room)

PERFECT PHOTOGRAPHY
ARTHUR EDESON, A. S. C.

EASTMAN
Panchromatic Negative
(TYPE TWO)

J. E. Brulatour, Inc.
New York Chicago Hollywood
HELL'S ANGELS." heralded as the "most lavish screen enterprise of all time." will make its world debut on Broadway, at the George M. Cohan theatre, in March. The Western premiere will follow shortly thereafter, and subsequently the film will be road-showed throughout the country. The multi-million-dollar air thriller, produced and personally directed by Howard Hughes, president of the Caddo Company, is finally and actually nearing completion, after approximately three years in the making. This information comes from the Caddo office direct.

The last shot, a battle scene in which exactly 1700 ex-soldiers participated, was filmed on December 7, and the picture is now being cut and edited for public showing.

"Hell's Angels," promises to be one of the 1930 sensations of the film industry. It will be 100 per cent sound and talking, will have a techni-color sequence, and is packed with air thrills.

Actual filming of "Hell's Angels" began on October 31, 1927, following six months of preliminary research and preparation. Shooting has proceeded steadily, with 18 months alone devoted to the aviation and zeppelin sequences. Delays, occasioned by unfavorable weather for aerial photography, have prolonged the production.

Also, the decision of Producer-Director Hughes several months ago to re-film the silent version, converting his picture into an all-talking presentation, has delayed its completion. "Hell's Angels," originally began as a silent picture, before the advent of "talkies." All of the non-flying sequences were re-shot with conversation and sound.

Ben Lyon and James Hall, principal players in this stupendous drama of air-war, are supported in the feminine department by Jean Harlow, a comparatively unknown actress who appears in her first screen role in "Hell's Angels." Miss Harlow, a former Chicago society beauty, replaces Greta Nissen, the Norwegian star, who appeared in the silent version. She is a natural blonde of striking beauty, and is being groomed by the Caddo Company for stellar roles in the future. Others who appear in the roster of players include John Darrow, Lucien Prival, Jane Winton Douglas Gillmore, Stephen Carr.

(Continued on Page 30)
Through this doorway come ideas which vitalize an industry

It is a simple stone doorway, of becoming dignity and architectural grace. With its doors but newly hung, the building to which it gives access already hums with the activity of research and experiment into the complexities of modern motion picture technique . . . thus the Bell & Howell Engineering Development Department dedicates its new home— with work.

Have you a problem . . . exacting days of worry and concern? Bring it to these experts. They have grown up with the industry, as Bell & Howell has grown these 23 years. In every phase of motion pictures they are competent technicians. Aided by the finest laboratory of its kind in the world, they offer you counsel, advice, service, research and experiment.

As competently as Bell & Howell have been building cinemachinery for more than a score of years, thus competently have they engineered for the industry at large. Consultations are invited on all phases of motion picture engineering, and particularly on sound development.

BELL & HOWELL COMPANY

BELL & HOWELL CO., DEPT. M., 1848 LARCHMONT AVE., CHICAGO, ILL
NEW YORK, 11 West 42nd Street • HOLLYWOOD, 6524 Santa Monica Boulevard
LONDON (B. & H. CO., LTD.) 320 Regent Street • Established 1907
Photographic Control In Variable Density Recording

(Continued from Page 7)

between negative exposure and resulting positive transmission.

\[T_2 = K E \]

If the exponent \((\gamma_1, \gamma_2)\), that is, the product of negative and positive gamma, is made equal to one we have the required condition of proportionality between negative exposure and positive transmission. Excepting certain adjustments which must be made for the effects of parts of the apparatus, this is the relation upon which the entire success of this method of variable density recording depends. Suppose we analyze it.

First let us convert equation (1) into the form of equation (2) and plot the results—that is:

\[T = k E \]

We find that the curves of Fig. 2 plotted in this manner in Fig. 3 are of entirely different character. Unfortunately, this is the form which must interest us in recording. In this figure the full lines show the counterparts of the curves in Fig. 2, the dotted lines representing the results which would be obtained if the \(H \& D\) curve were entirely straight—a practical impossibility. The same kind of curves, of course, obtain for both negative and positive. We learn three important things from these curves:

1. The record obtained from a negative is far from propor-
tional to the original.
2. It is necessary to counteract this distortion in making and processing the positive. In other words, we must combine two exponential curves to produce the overall relation of proportionality—a straight line.
3. The toe and shoulder sections of the \(H \& D\) curves show up in Fig. 3 as the departures from the dotted sections. The toe is of great interest, as will be seen later.

It is a requirement—expressed in terms of the \(H \& D\) curve—that we control exposures so as to remain on the straight section if our overall proportionality is to be correct. This must similarly remain off of the toe and shoulder sections of the exposure transmission curves. To keep away from the shoulder generally involves no hardship—merely the adjustment of maximum exposure to remain below the over-exposure point. An adjustment which still leaves plenty of latitude of exposure. On the other hand, we often wish to go to zero exposure to utilize the full range of the light valve, but to do this we get down on the toe section and distortion results.

Suppose we take the curves of Fig. 3, selecting one for the negative having a gamma less than one, and for the positive a gamma greater than one—practical combination—and combine these hyperbolically or mathematically to simulate the printing process. We find the result in Fig. 4, plotted between original negative exposure \(E_n\) and resulting positive transmission \(T_p\). For the moment consider only the central portions of the curves and the dotted extensions. If the product of our gammas—that is the overall gamma—equals one we have \((b)\), which is a straight line throughout. If the overall gamma is greater than one we have \((a)\), and if less, we have \((c)\). Either \((a)\) or \((c)\) would obviously produce distortion.

These curves are constructed so that neither negative nor positive is the shoulder portion used, a practical condition. The dotted sections show what would happen if the toe sections did not exist. The complete full line curves show the actual curves resulting from a commercial emulsion, the departure from the theoretical being caused by the negative toe at low exposures and by the positive toe at high exposures.

This figure, which is the practical result of equation (6), shows us then that:

1. The overall gamma is quite critical.
2. Both negative and positive toe sections are detrimental to quality.
3. We must keep the toes as small as possible.
4. We must limit the negative exposure to the regions inside the two toe sections if we wish to minimize distortion.

Another point of interest, not shown by this particular figure, but true in general, is that decreasing the slope of the gamma, that is, decreasing positive transmission for a given negative exposure scale decreases somewhat the detrimental effect of the positive toe.

In practice, the negative exposure is fixed by the scale of the emulsion, and to some extent by the recording lamp available. The positive transmission range is fixed by the requirements of the reproducing apparatus. In Fig. 5 is shown the result of actual measurements of this overall relation for production work under average good conditions. Better results have been obtained—also worse. It will be seen that over the central part of the range of negative exposures, good proportionality of positive transmission is obtained. As we use more of the exposure range we begin to strike the curved section at each end. This occurs on the average from 50 to 60 per cent modulation when using Eastman positive stock, with normal development formulae—or about perhaps 6 db below the clamp point of the light valve—zero exposure. Reaching these central sections clearly produces a distortion, the seriousness of which depends upon the type of sound and the quality requirements of the producer. For ease in estimating this distortion a sine wave exposure is shown—for low modulation and for complete modulation—with the resulting transmission variation. The loss in quality due to recording at high modulation of the valve being shown by the shaded portions.

This method of expression of the photographic relations shows well the inherent photographic mechanism of the light value variable density method of recording. By it, starting with a quantity in the form of an electrical current which can be analyzed, we see directly what the resulting electrical quantity will be, and what departures from the original have been introduced by the photographic processes. It proves the accuracy of the measurements, checks the chemical balance and condition of developer—both negative and positive—as these help to control the size and shape of the disturbing toes, shows us the modulation limits inside of which we must stay for relatively small reproduction of spurious harmonics and consequent distortion. In short, it gives an immediate overall picture of what is happening. In practice it has been found to be an excellent means of checking and analyzing daily results under production conditions involving monthly some millions of feet of sound film records, including both rushes and release prints.

Western Electric Circles Globe

THE WESTERN ELECTRIC Sound System has been installed in more than 4000 theatres throughout the world. Of this total 3006 installations were in the United States and balance in the foreign field.

Foreign countries in which one or more Western Electric Sound Systems have been installed include: Great Britain, Canada, Australia, Belgium, Czechoslovakia, Denmark, Egypt, Finland, France, Hungary, Italy, Netherlands, Norway, Poland, Spain, Sweden, Switzerland, Turkey, the Balkan States, Australia, China, India, Japan, New Zealand, the Philippines, Argentina, Brazil.

An example of the extent to which talking pictures are encircling the earth is found in the installation of the Western Electric Sound System at Verdenfestet Trondhjem, Norway, only 190 miles away from the Arctic Circle.

Edeson Shooting Universal Feature

ARTHUR EDESON, A.S.C., one of Hollywood’s foremost cinematographers, is director of photography on Universal’s gigantic super-production of “All Quiet On the Western Front.” Erich Maria Remarque’s sensational book of the war.

Edeson has charge of the corps of cameramen who are being used on the spectacular Western Front scenes of the picture. Among the pictures he has photographed are “The Cock-eyed World,” “Robin Hood,” “The Patent Leather Kid” and “The Drop Kick.”
"action!"

National photographic carbons come in two types. Both types allow you to get every bit of action in the scene. For sunlight and moonlight effects, night work or for long shots use National White Flame Photographic Carbons (hard-arc). Their light is actinically identical with sunshine. They retain their actinic value for long distances.

The use of National Photographic Carbons cuts down the cost of studio lighting. These carbons are more economical to use because they give more light per watt of electrical energy. They can be used in small or large units.

The soft orange light struck from National Panchromatic Carbons (soft-arc) produces particularly delightful effects in close-ups. This light—rich in yellow-green, orange and red rays—molds the face in warm, caressing shades of highlight and color. Effective with the newly developed panchromatic make-ups, they are doubly effective when used in conjunction with panchromatic emulsions.

National Photographic Carbons
White Flame and Panchromatic

National Carbon Company, Inc.
Carbon Sales Division, Cleveland, Ohio

Oscar B. Depue Designs New Combination Printer

By D. J. Goff

As CHICAGO field representative of the American Cinematographer, I recently had the pleasure of interviewing Oscar B. Depue, whose achievements in the design and manufacture of cinematographic laboratory apparatus are familiar to everyone in the industry. Mr. Depue has just completed an entirely new combination printer which will do even more than the most exacting director could wish for.

The new printer is in reality three machines in one, for it is not only an unsurpassed optical printer, but also a marvelously capable trick-camera, and an excellent continuous printer. The machine itself is a marvel of design and workmanship, made with all the scrupulous attention to detail for which the Depue printers have always been famous. In designing the printer, Mr. Depue has so arranged the gate that in addition to regular contact printing, it will take a curved aperture-plate for printing master positives and duplicates negatives. The aperture filters are mounted in such a way as to permit quick insertion or removal, and in a position where heating is avoided. As they are midway between the light source and the negative, spooks of dust on them will not throw shadows on the film. As there is space provided for case-making, size and shape of the aperture can be varied at will—a valuable aid in printing sound-on-film scenes. It will also eliminate the sound track by slightly enlarging the picture, or leave a space for one, without injuring the composition, by slightly reducing.

Another important point which Mr. Depue has covered in the design of his printer is the aperture-plate: The pressure-plate is recessed a few thousandths of an inch, and blackened so that the surface will not reflect the light through the positive film. Of course this practice has long been followed in camera construction, but this is believed to be the first printer to do so: up to the present time, all continuous printers have been made with a highly polished steel pressure-plate, which naturally reflects a certain amount of light, softening down the print undesirably. This effect is probably the reason why many experts have preferred the step-printer, which, having no polished reflecting surface, tends to give a snappier print. Mr. Depue's attention to this minute and hitherto unnoticed detail bids fair to put continuous printers on a par with step printers in this respect. The aperture may be used for printing the sound track, the audible quality is equally improved.

The machine is, of course, fitted with Mr. Depue's famous automatic light control, which has a capacity of 152 scenes and 18 different densities, which automatically takes care of the usual 1000 ft. roll of negative, and is invaluable where machine developing is used. The machine is also so arranged that the operator can sit facing the machine, instead of at one end of it; this adds greatly to the general convenience of its operation.

The lamp house is attached by sliding on two bars that are furnished for the 16mm. optical printing head, and it is but a moment's work to remove it, and fit any of the various attachments furnished for the main printer. The machine is capable of handling every printing operation conceivable with either 16mm. or 35mm. film, or both, and being able to enlarge or reduce, and print from 35mm. stock to sub-standard, or vice-versa, it will print reverse motion, stop-motion, fades, lap-dissolves, multiple-exposures, etc., and all manner of unique and difficult trick scenes such as making close-ups out of long-shots, and the like. Truly, it is a most marvellous versatile machine, which will find a warm welcome in any laboratory.

Mr. Depue is now working on a printer for the simultaneous printing of sound and picture negatives. This latest device is already more than half completed, and embodies many original and ingenious features, which I feel sure will make the machine so invaluable that the industry will be quick to adopt it. As soon as it is completed. I have been promised an opportunity to inspect it. The American Cinematographer will be able again to have information of the latest product of that unsurpassed genius, Oscar Depue.

Len Roos No Longer With Cinema Equipment Company

Len Roos, A. S. C., who for a time was with the Cinema Equipment Company, is no longer associated with that concern.

Storing and Handling Film And Attending Hazards

This article from the Department of Commerce at Washington should be read by everyone who handles film in any capacity.—Ed. Note.

NOTWITHSTANDING the severe lesson taught by the Cleveland Clinic disaster of May 15, 1929, and the widespread publicity then given to the hazard involved in the handling and storage of nitrocellulose films, serious accidents attributable to such films occur, states Dr. Charles E. Munroe, Chief Engineer of the United States Bureau of Mines, Department of Commerce. Only recently accidents of this nature occurred at Los Angeles, San Francisco, Salt Lake City, Newark, N. J., and at Opelousas, La., resulting in many casualties, some of which were fatal, and in heavy property damage. Stored nitrocellulose films, such as are used in the production of motion pictures and X-ray photographs, present the menace of fire, explosion, and wholesale gaseous poisoning. Dr. Munroe warns. For these reasons, such films should be stored only in accordance with the best practice.

Flameless combustion of nitrocellulose films can be started by exposure to temperatures as low as 150°C. The danger of spontaneous decomposition of film eventually resulting in spontaneous combustion may be reduced by the use of static charges through friction. are also referred to by Dr. Munroe.

The first accident of any magnitude caused by nitrocellulose films, appears to be that which occurred in the Ferguson building, Pittsburgh, Pa., on September 27, 1909, whereby a modern office building was seriously damaged and 50 persons were injured. This event was thoroughly inquired into by explosives experts from the Pittsburgh Testing Station of the Bureau of Mines, who also made an exhaustive experimental study of moving picture films such as were involved in the disaster. The report was published in the Nickelodeon, one of the pioneer moving picture journals, and was reprinted by the Board of Underwriters of Allegheny County, Pa., for the information of the fire insurance fraternity.

That moving picture films were, like thin strips or shavings of other combustible substances, easily ignited, quite inflammable, and highly combustible was quite generally known, and because of their being composed of cellulose nitrates, many recognized the possibility of explosion, and in them. A characteristic of these substances is that their decomposition is autocatalytically initiated. As a fact, film was actually observed to be condensed while this flameless combustion was actively going on in the film and no flame, nor even a glow of light, was seen, though heat was set free. This process of decomposition also gives rise to the evolution of very considerable quantities of nitrous fumes and of carbon monoxide, and each of these substances is extremely poisonous, and, as mixed, very dangerous to encounter. Furthermore, since carbon monoxide is quite combustible, and the nitrous fumes are supporters of combustion, violently explosive gaseous mixtures may be formed from them alone, or in admixture with air.

As flameless combustion of nitrocellulose films can be started by exposure to temperatures as low as 150°C, brief contact with the bulb of a glowing incandescent electric lamp, a heated steam coil, the glowing end of a cigarette, a hot wire, a flame or similar sources of heat, will almost immediately start this reaction, and it may even be started, through more prolonged contact, with bodies being heated to 100°C, the temperature of boiling water. When flameless combustion is initiated in a mass of films it may, according to circumstances, continue throughout the mass, or it may be transformed to active combustion which is accompanied by the production of flame and the evolution of light as well as heat. This transformation is the more likely to occur if the mass of films is insulated so that the heat generated in flameless combustion accumulates in the mass (Continued on Page 40)
It takes courage to pioneer but after pioneering with Inkies and now the "Mike" Boom, a little thing like running an advertisement sideways didn't cause a ripple in the M-R organization.

ANOTHER
M-R
DEVELOPMENT

The M-R Improved "Mike" Boom brings new economies and new production ease to the making of sound pictures. Because its operating radius can be increased from 10 feet to 16 feet 6 inches horizontally and it can be depressed to the floor or elevated 22 feet and can be traveled about over the set during the shooting. It makes one "Mike" do the work which formerly required several and its perfected silent mechanism enables the operator to achieve equal and balanced tone volume with the absolute minimum of mixing. The M-R Improved "Mike" Boom has been proved in actual service by R.K.O., M.G.M., Columbia and Universal.

We'll be happy to send details if you'll write or phone.

If it isn't an (M-R) it isn't an Inkie.

MOLE - RICHARDSON, Inc.
Studio Lighting Equipment
941 N. SYCAMORE AVENUE HOLLYWOOD, CALIFORNIA
Principles and Processes of Photography in Natural Colors

(Continued from Page 4)

unable to realize much commercial success from any one of these methods.

Of the many references published on color photography, Wall's History of Three Color Photography, which was published in 1925, is perhaps the most valuable since it represents a compendium of information on all phases of the subject.

Classification of Processes of Color Photography

It is convenient to divide processes of color photography into two classes, the additive and subtractive methods. In the former a colored result is produced by starting with a dark screen (one on which an image was formed), and projecting white light until the desired color is obtained. An example of this method is Maxwell's experiment. In the subtractive process it can be considered that a white screen is used and that certain parts of white light are subtracted or taken away until the desired color is obtained.

The triangular diagram in Fig. 6 illustrates the principles of the subtractive process. As noted in the figure, when a strip of magenta gelatin which will absorb green light is placed over a strip of blue-green gelatin which absorbs red light, only blue light is transmitted. Thus, a blue image may be obtained either by projecting through a blue filter or through a combination of magenta and blue-green filters. Similarly, a red image may be obtained by putting a yellow one on top of a magenta image, or a green image by putting a blue-green image on top of a yellow image. The art of painting makes use of a subtractive process since it consists in applying colored pigments to a canvas until the resulting combination gives the desired result.

For purposes of presentation, the subject has been classified as follows:

I. Still Photography

A. Transparencies

1. Additive Processes
 (a) Three color
 (b) Two color

2. Subtractive Processes
 (a) Three color
 (b) Two color

B. Prints

1. Additive Processes
 (a) Three color
 (b) Two color

2. Subtractive Processes
 (a) Three color
 (b) Two color

II. Motion Picture Photography

A. Transparencies

1. Additive Processes
 (a) Three color
 (b) Two color

2. Subtractive Processes
 (a) Three color
 (b) Two color

B. Prints

I. STILL PHOTOGRAPHY

A. Color Transparencies

1. Additive Processes
 (a) Three-color
 (b) Triple Exposure Methods. One of the earlier methods which received some commercial recognition was the three-color additive process of Professor Miethe of Berlin. His camera had a repeating back and means of successively exposing the three-color separation negatives through the requisite filters placed in front of the plates. The positive prints obtained from these negatives were projected by means of a complicated triple lantern. This process, however, and a similar one designed by F. E. Ives, another pioneer in color photography, had the objection that the pictures were not taken simultaneously and required an intricate lantern for projection. To overcome these difficulties, Ives designed a camera wherein two special mirrors split up the light entering the single lens and exposed the three plates simultaneously. By a similar principle the three-color impressions could be examined in a special viewing outfit. Ives also designed a method for making stereoscopic pairs of three-color positives (Kromograms) which were viewed in a device called the "Kromoscope." (See Figs. 7 and 8). Cameras for making three-color negatives have also been designed by Butler, White, Sanger, Shepherd and others.

Screen Plate Processes. One of the novel processes suggested by Du Haunor was that the surface of a plate might be covered with red, green, and blue, and then the sensitized emulsion coated on top. By photographing through the back of the plate an image would be obtained which was cut up into tiny sections similar in size and shape to the filter sections. Several systems of making these "screen" plates have been worked out. One method may be divided into two groups according as they yield (a) a regular pattern, or (b) an irregular pattern. Examples of the former would be methods of ruling a series of red, green, and blue lines on the plate surface or producing a mosaic of tiny red, blue, and green squares. The latter are irregular methods represented by processes whereby colored particles one layer thick are dusted on the plate surface.

In 1892 the first recorded attempt to make a screen plate of the regular type was made by J. Joly of Dublin. He obtained rather pleasing results by ruled line methods. His line screen was on a separate plate and after the negative had been exposed, a positive was printed and placed carefully in register behind another line screen. About the same time, J. W. McDonough of Chicago, Ill., introduced a process somewhat analogous to Joly's method. Fig. 9 is a reproduction of a slide made by the McDonough process.

The most successful commercial process, however, is the Autochrome which was introduced by A. and L. Lumiere in France in 1912. It is an additive process. This is an emulsion of potato starch varied in form and size are dyed in separate batches, blue, green, and red, with dyes especially selected for that purpose. The dyed grains are mixed into the emulsion the ratio of four green to three red to two blue, and are dusted on the surface of the plate. The interstices are filled with a black powder and the layer rolled in under pressure. The plate is then varnished and coated with a panchromatic emulsion. When finished, there are over four million of these color filters per square inch (see Fig. 10). Although the three colors should combine to give the effect of white when looking through the screen, they actually appear a salmon pink. Exposure is made through the glass side so the light will have to pass through the colored screen before reaching the emulsion. After the exposure, the plate is developed and then bleached in acid permanganate which dissolves the silver negative image, but does not attack the unexposed emulsion. An exposure to white light now makes the remaining area developable and after the second development a positive image is obtained. The process of bleaching, exposing, and redeveloping is known as a reversal process because the original negative is converted into a positive.

The Agfa color plate was originally announced in 1916, but was not introduced until 1923. This plate has a three-color screen similar to that of the Autochrome, except that dyed particles of gum arabic rolled out in collodion are used. Color screen methods were first applied with some commercial success to roll film and film packs by the Lignose Company of Berlin in 1927.

The Agfa three-color plate introduced about 1912 was very popular for several years. The color screen and the sensitized emulsion were on separate plates thereby eliminating some of the difficulties of screen plate manufacture. In the event that the picture was spoiled, the screen could therefore be used again. When binding up the transparency it was somewhat difficult to register the color screen. Although withdrawn from the market for a few years the plate has been introduced again under the name "Duplex Color Plates."

Numerous other screen processes have been worked out, but very few of them compare with the Autochrome in quality and keenness of the screen particles, the uniformity of the product, and the beauty of the color rendering. Even the Autochrome process has certain limitations. One of the most serious is the thin emulsion coating and such a coating has a narrow range of gradation or ability to reproduce a scale of tones. The plates are also very dense and require strong illumination than ordinary plates for projection.

Bi-pack and Tri-pack Methods. Numerous methods of exposing two or three films simultaneously have been suggested. The first of these plates was introduced as early as 1910. The films (or interposed filters) transmit certain portions of the light in exposing the different layers, and a set of three-color separation negatives is obtained. The order of exposure varies with different processes, but the usual procedure is to place the blue sensitive film uppermost, then the green, and then the red. It is impossible to obtain critical sharpness by such a method although some rather pleasing results have been produced.

(Continued on Page 24)
THE FEARLESS CAMERA CO.
Announces
The 1930 Model
FEARLESS SILENT CAMERA
(Designed thruout by Ralph G. Fear to meet the most exacting conditions of sound production where absolute silence of cameras is essential)

Built for Standard or Double Width Film. Provision made for recording sound directly in the camera

Built-in Features Include

1—Fearless Simplex Highspeed movement with automatic quick threading pin
2—Fearless Automatic Film Tension Control
3—Fearless Automatic Circuit Breaker
4—Built-in high speed gear box of triple range
5—Three-speed mechanical dissolve
6—Simplified Fearless Focusing device
7—Built-in Speedometer
8—Built-in Auxiliary Sound recording aperture and sprockets
9—Follow Focus of Simplified design
10—Built-in reduction gearing for 50 cycle or 60 cycle current non-gearred motors
11—Full force feed oiling system pumps oil to bearings and gears
12—Balanced double aperture shutter
13—Provision made for taking colored pictures by the Multicolor system of color photography
14—Built for standard or double width film
15—Becomes a recording camera when equipped with standard light valves or the Fearless Photo Recording Lamp
16—All moving parts inclosed and running in oil except intermittent movement

Manufactured by the
Fearless Camera Company
7160 Santa Monica Blvd.
Hollywood, Calif.
Successor to the Cinema Equipment Co.
After January 1, 1930

There is no change of ownership or policy.
Principles and Processes of Photography in Natural Colors
(Continued from Page 22)

(b) Two Color Additive. The majority of transparency processes are three-color processes, but a few two-color additive methods have been worked out. A two-color line screen process has also been suggested.

(2). Color Reproduction by Subtractive Processes

Thus far we have discussed methods whereby the final picture is made by superimposing or adding up the light from three primary colors. In nature, however, substances are not colored in this way, but, instead, they absorb or subtract certain component parts of the visible spectrum of white light and reflect the remainder. This is true of gelatin, the silver compound of which is the color the normal eye records as the natural color of the object.

(a) Three Color Methods. When preparing a three-color transparency by the subtractive process, it is necessary to make three positive color records either on thin gelatin coated films or tissues and superimpose these in register. Methods of securing these positive records may be classified as follows (i) mordanting and toning methods, (ii) carbon (or pigment) transfer, (iii) imbibition, (iv) hard and soft gelatin methods, and (v) relief processes.

(i). Dye Mordanting and Toning Processes. In these processes, positives are printed from a set of three-color separation negatives, and the usual three-color subtractive method may be employed. The final dye images are distributed throughout the original gelatin film so that the entire film must be transferred to the final support.

It is quite difficult by chemical toning methods to secure true color complementary colors, but nevertheless some pleasing results have been produced. Iron toning is occasionally used to produce a blue image, and mercury (iodide) gives a yellow image, but there is no satisfactory toning method known for making a red image. Although the reddish brown image obtained with uranium toning has been extensively used, it is sometimes used in conjunction with other color processes.

(ii) Carbon or Pigment Transfer. This process makes use of a property that bichromated gelatin possesses of becoming tanned or hardened when exposed to light. If a plate is coated with bichromated gelatin and is placed behind a negative as in Fig.111, and then exposed to light, only those parts of the bichromated plate which the light does not reach will remain unhardened and therefore soluble in hot water while the parts exposed to the light will be insoluble in hot water.

Exposure is usually made through the back of the film or plate in order that the delicate highlights may not be washed off during the developing process. When the plate has been printed, the negative may be removed, and the image remaining may be dyed up by choosing dyes which are absorbed by tanned gelatin. The dyes must be complementary* to the filters through which the negative was exposed: thus the green filter picture is dyed magenta, the blue filter picture is dyed yellow, and the red filter picture is dyed blue-green.

When the three positives thus obtained are cemented together in register, a transparent color reproduction of the original subject will be obtained.

(iii). Imbibition Processes. Transparency by the imbibition process consist of dye images in a single gelatin layer. When a dyed relief image in gelatin is brought into intimate contact with a plain gelatin surface, the dye tends to wander to the other surface or become imbibed by the gelatin. Such imbibed images are inclined to be fuzzy and expedients are therefore taken to prevent spreading of the dyes. Registration of such images is also very difficult, but very pleasing results have been obtained.

(iv). Hard and Soft Gelatin Process. A process was introduced in Germany in 1906 known as the pinatype which utilized the fact that certain dyes will stain soft in preference to hard gelatin. The process as originally introduced was tedious as it required nine separate printings. Three transparencies are prepared, each of which may color the three plates to be printed on bichromated gelatin from the transparencies. The print plates are then dyed up with dyes which are only absorbed by soft gelatin and a positive image is produced on the print plate which contains an invisible negative image of tanned gelatin. The dye image may subsequently be transferred to another surface if desired.

*Complementary dyes are those which absorb the light which the filter dyes transmit.

(v). Relief Processes. There are three methods commonly employed for producing a relief image in gelatin, (a) the use of the tanning action of a bichromate solution on the gelatin around the particles of silver, (b) the use of an oxidizing solution such as hydrogen peroxide which dissolves away the image and attacks the gelatin immediately around each silver particle comprising the image. The relief image is then either fixed and dyed, or it may be used as described under carbon or pigment transfer methods.

(b) Two Color Methods. Because of the complication of a three-color process, several investigators have tried to perfect a two-color subtractive process. The possibility of getting satisfactory results with the subtractive method is somewhat greater than with the additive method. With the latter, two colors must exactly balance each other or be complementary to one another in order to obtain true whites and blacks. In the former or subtractive method, whites are obtained by the absence of color and blacks by using both colors in full strength so that colors may be used which are not exactly complementary and the range of usable colors is greatly extended.

The method of preparing transparencies or lantern slides by this process is essentially the same as for a three-color subtractive process, the final result consists of two plates, films or tissues, which have been dyed by some suitable method and then superimposed in register.

The Kodachrome process of color portraiture introduced in 1915 made use of the property possessed by certain dyes of staining soft in preference to hard gelatin, and being transparent to the former, and subsequently the dyes were developed, and then converted without fixing into dyed positives. This process used a tanning bleacher which removed the original negative image and simultaneously hardened the gelatin in proportion to the amount of silver image present.

Color Photography. A two-color subtractive process is admirably adapted. It is also useful for photographing certain flowers, still life, or fashion scenes in which reds, greens, or orange predominate. It is unsuitable, however, for landscape work where there is an excess of blue, blue-green, and violet. For clinical and photomicrography it finds useful application.

B. Color Processes Yielding Prints to be Viewed by Reflected Light

Although most of the color transparency processes are capable under certain conditions of yielding color prints, the majority of the processes are primarily intended for use in producing transparent color prints, but may be worked out primarily as print processes. The average individual prefers a photograph that can be examined in the hand or hung upon the wall to one which must be held before an illuminator or projected upon a screen.

1. Additive Print Processes

Numerous attempts have been made to perfect an additive color print process but none have met with any practical success. Subtractive processes are much simpler to work and the majority of print processes therefore have been subtractive methods.

2. Subtractive Print Processes

All of the methods described previously under subtractive transparency processes are adaptable to making prints. The final stage of the process usually consists in superimposing two or three color tissues or gelatin films in register or transferring the image by projection to a suitable support.

(a) Three Color Methods.

(i). Dye Toning Processes. More or less degradation results by this method as the colors often wander and the print is usually rather dark because the light has to penetrate several layers of film and be reflected back through them. Ivus’ Hichrome process is one of the best examples of this method.

(ii). Transfer Processes. Under the general term, transfer processes, may be included all processes in which the film color image is transferred to tissue, wherein bichromated tissues containing the respective color records are transferred from their original support to a paper support. Three color carbon prints are prepared by applying a mixture of gelatin and pigment to a thin piece of film support, sensitizing the gelatin in bichromate solution and superimposing the negative or color negative through the film side of the tissue, dissolving off the soluble gelatin in hot water, and mounting gelatin side down on a piece of smooth white paper. After the sheets have (Continued on Page 44)
MULTICOLOR

The choice of the leading technicians of the motion picture industry—who acclaim it as being—

"The Final Answer to the Color Problem"

A few of the reasons why—

— all shots are made with normal black and white lighting . . . a vast saving in time and production cost . . . effect shots in full color for the first time.

— standard cameras are used . . . every Mitchell, Bell and Howell, and new Fearless silent camera is a potential Multicolor camera.

— color and sound-on-film in one process . . . for dailies and release prints.

— Multicolor prints are made on a single film and present no "buckling" problem.

— Multicolor's protective treatment of prints prevents scratching, assures a maximum of wear, exceeding that of black and white prints . . . Multicolor prints have run for 400 performances before replacing was necessary.

— and finally . . . Multicolor offers the cinematographer the entire color world to shoot at anew — presenting limitless artistic and commercial possibilities heretofore denied, because of technical and mechanical difficulties.
In Africa
(Continued from Page 9)

suggesting a seat. The Bell & Howell and I were mounted at this end, with the other end well across the cross-bar, one on the parallel, and half a dozen or so natives hauling on a block-and-tackle furnished the motive power. Maybe our crane wasn’t as big and fancy as the one Hal Mohr plays around on at the ‘U’, but it worked—and that was all we cared about.

‘Wild animals? Of course we saw a lot of them; but we were out there to make pictures, not to hunt them. We’d have been perfectly satisfied if we’d been able to get along without any of that kind of excitement—until the picture was finished. Of course we couldn’t: Africa isn’t like that. We all ran into a few tight squeezes in spite of everything. My own? Well, soon after I got out there I was tried between the buffaloes—and, believe me, those African buffaloes are tough hombres. The natives say it’s a toss up between them and the rhinoces as to which is the fiercest and ugliest-tempered brute on the plains. I didn’t meet any full-grown rhinoces, so I’ll vote for the buffalo, every time. Of course we had most of the usual adventures with lions, and that sort of thing, but the nearest I came to doing a quick fade-out was near Murchison’s Falls, in the Uganda, when a crocodile nearly got me. We had corralled a bunch of the brutes in a pond where we were going to shoot some scenes they were needed in. Everything would have been all right if we hadn’t had about four days of unbroken bad weather.

‘The ‘crock’s’ began to get restless, and tried to get back into the Nile, where they belonged, so we had to stand guard around the stockade they were in, or lose our ‘croc’s.’ At first, burning torches were enough to make them behave, but in time they grew used to them, and we had to pepper the .22 rifles. Now, a .22 bullet—even a long rifle cartridge—isn’t enough to more than annoy a crocodile, but, for a while, we succeeded in keeping order with them. Finally one of the brutes decided that he was going to come through the place where I was on guard—and, believe me, he came! My torch didn’t faze him at all: he grabbed it right out of my hands, and kept right on. Then I peppered him with my ,22, but though I emptied it down his throat, it didn’t do any good at all. He kept right on coming—and I didn’t have any more weapons, nor any place to jump to, so I began to figure it was ‘curtains’ for me, when one of our white hunters got near enough to finish the brute with an elephant-gun. One more inch, though, and it would have been my finish, instead of the ‘crock’s.’ But after all, my closest shave wasn’t in Africa at all, but in New York, where only the grace of God and a friend’s strong arm saved me from a man-killing taxis!

‘To me, though, the most outstanding feature of the trip was the wonderful aid our radio set was. We’d found it a great help on the last two pictures, in the South Seas, so on this one we took a specially built outfit, designed just for expeditionary work. As you know, we established our base in Nairobi, including our laboratory, business office, etc., and by means of our radio, we were able to be in constant touch with affairs. Our operator at that end was an enterprising radio amateur named Pegrum, without whose aid our trip would have been a thousand times more difficult. As it was, we two handled more than 25,000 words of traffic between us without failures or error—a really remarkable record, considering the conditions and that we’re both amateurs.

‘Of course, once or twice I reached out farther, and ‘talked’ directly to the States, but as wire and radio communications are a British Government monopoly, and jealously guarded, we confined ourselves to keeping in touch with Nairobi at the time. That was of inestimable value to us in every way. On one occasion, for instance, Mr. Van Dyke and I were going into Belgian Congo, to photograph the pygmies there, and the rest of the outfit was broken up into several parties, to reassemble at a given location, several weeks later, ready to shoot pictures. But the weather in the Congo turned out bad, with no hope of any improvement, so Van decided to change his plans. By means of the radio we were able to get the others together almost at once, saving many valuable weeks.

‘There were countless other instances like these, of course during the ten months we were out; but, after all, as far as I’m concerned—and I think the others agree with me—the real high spot of the trip was seeing Hollywood Boulevard again! You can say all you want to about Hollywood, but it’s home to us—and there’s no place like it!’
Reeltone Pictures Co.

Announces
It Is a Licensee of the

Tanar Recording Light

a product of the
Len H. Roos Laboratories
and can promise 30-day delivery
of
Portable Recording Equipment
for
Industrial and News Reel Work
for further detailed information address—

1107 No. Serrano St.
Hollywood
California
At Last It Is Possible!

For many years Directors and Camera Men have desired special effects in their films after the sets have been shot and dismantled, or it is too late or too expensive to make a retake. Such effects as making a long shot into a close-up, putting in lap dissolves and fades, making a miniature of a scene and double exposing it over another scene, and other special effects.

To meet this situation, the Burton Holmes Laboratory has installed one of the new DEPUE 35 mm. Optical Printers which will do all of the above stunts and many more.

Keeping abreast or ahead of the times has always been the policy of this organization.

Burton Holmes Laboratory
7510 N. Ashland Ave. CHICAGO, ILLINOIS

Harvard and Pathe Plan Film Series

In cooperation with Harvard University, Pathé will at once start production upon two series of educational motion pictures in which talk will be used wherever advisable, according to Joseph P. Kennedy, Chairman of the Board of Pathé Exchange, Inc. Thus sound will become a part of instruction by the motion picture. It is the belief of Harvard officials and Kennedy that the addition of sound to such pictures will add immeasurably to their effectiveness as a pedagogical aid.

One series will be a comprehensive and exhaustive treatment of "Regions of the United States." The other will be on "Commerce and Industry." In the first mentioned the eight separate geographic regions will be the subject of the pictures; in the second the basic industries of the country.

Plans for these educational pictures have been prepared by Dr. Kirtley F. Mather, Dean of the Department of Geography at Harvard, under whose supervision the films will be edited. Pathé will produce them. Distribution will be handled by the Educational Department of Pathé through thirty-one branch offices in the key centers of the country.

The Regional Series will show the physical aspects, recreational scenic attractions, resources, industries, principal cities, historic landmarks, development of commerce and industry, and the influence of commerce, industry, and transportation on each of the regions and its cities. These regions are New England, Middle Atlantic, South Atlantic, North Central, Central, Gulf, Rocky Mountain and Pacific Coast states. The series will comprise sixteen reels of film, and the contents so arranged that each reel may be used separately.

The Commerce and Industry Series will comprise films on Vegetable Products, Forest Products, Animal Products, Mineral Products, Transportation, Communication and Public Service, and Marketing and Manufacture. It will include twenty to twenty-five separate subjects. Each of the pictures in the series will discuss the history and development of the basic industries of the several regions, the influence of each industry on the commerce and development of each region and the country as a whole, the methods employed in production or in the service rendered, and the use of the product by the public served.

The Standard size will do many kinds of printing. It will eliminate the sound track by slightly enlarging, also furnish a sound track by slightly reducing. Will print reverse motion, stop motion, lap dissolve, fade in and out. Print miniature or enlarge from sections from Standard negatives for close ups. Space for written filters provided. Also for camera masks.

OSCAR B. DEPUE
7512 North Ashland Avenue, Chicago, Illinois
Early History of Wide Film
(Continued from Page 5)
very risk in those conservative days. The May Irwin Kiss, Little Egypt, Lois Fuller’s fire dance, Bridget Serves Salad Undressed and many others brought gasps of amazement at their audacity.

On November 3, 1899 the Jeffries-Sharkey fight was held at Coney Island at night. Wm. A. Brady, now well known in the theatrical and motion picture world, and a promoter named O’Rourke sponsored the bout and induced the American Mutual and Biograph Company to film the fight by the machine.
The film used was 2 1/4 inches wide and each frame was 2 1/4 inches high. Three hundred and twenty feet of this wide film was used per minute, the perforations being made in the camera at the instant of taking.
The fight lasted for twenty-five rounds of three minutes each. Widescope film was exposed on both sides of the film and was cut in half. The film was then wound up in one hundred foot lengths, unwound and rewound inside the camera on aluminum spools; not a daylight proposition, but a dark room model. This machine he took to Italy and the first motion picture turned out on the machine was of St. Peter’s Cathedral with the fountain playing in the 22 3/4 inch space on one side and a flock of geese flying in the sky on the other side. They were the only perforations, that the projectionist had to watch the frame continuously to prevent creeping of the frame line on the screen.

Oscar B. De Pue, partner of Burton Holmes, in 1897, purchased a machine in Paris from Leon Gaumont for taking 60 mm. wide pictures of the street scene. He then put up in one hundred foot lengths, unwound and rewound inside the camera on aluminum spools; not a daylight proposition, but a dark room model. A camera he took to Italy and the first motion picture turned out on the machine was of St. Peter’s Cathedral with the fountain playing in the 22 3/4 inch space on one side and a flock of geese flying in the sky on the other side. They were the only perforations, that the projectionist had to watch the frame continuously to prevent creeping of the frame line on the screen.

Sporo and Bergen have worked for more than ten years upon a 65 mm. film called Natural Vision pictures.

Widescope was a double frame picture standard of film with the film travel horizontal instead of vertical, after that an Italian patent was acquired in which a wide film of about 2 1/4 inches width is held in cylindrical form about the axis of rotation of a revolving lens so that the succeeding frames are photographed on the same principle as in a panoramic still camera. Unfortunately this method of taking pictures introduces the same curvilinear distortion often noticed in cirkuit and other panoramic still photographs.

Fox Grandeur pictures are 70 mm. in width with a frame 48 by 69 mm., leaving space available for a sound track about 10 mm. wide.

Lorenzo Del Riccio, a member of the society, is perfecting for Paramount the Magnafilm. This film is 56 mm. wide and the frames are 1 3/4 mm. high.

All other sizes of wide film are being used experimentally and other new sizes are being advocated but these are current and not early history and do not properly belong in this chronicle.

Fearless Camera Company

Ralph G. Fear, head of Cinema Equipment Co., announces that on January 1, 1930, the Fearless Camera Co. will be merged into Fearless Camera Company. "The change of name," says Mr. Fear, "does not denote a change in ownership or of policy. We are doing business at the old stand, and we feel with the advent of the New Fearless Silent Camera, in a bigger and better way."

New Fearless Camera
(Continued from Page 11)

One of the noteworthy features of the Fearless Silent Camera is the method of shifting for focusing and returning to shooting position. Instead of shifting the entire camera head the lenses and their mounts are shifted by the simple process of turning a lever conveniently located at the rear of the camera. This requires merely the effort exerted in turning a small lever with thumb and forefinger. The lenses are in micrometer mounting and the motor itself may be controlled by the cameraman. The turret has been so designed that all the lenses, together with their mounts, may be removed in less than one minute. A simple follow focusing device can also be supplied.

"At the side of the camera are located four separate driving shafts. These are designed for the plug-in type of motor. One drive shaft is for 60 cycle current, one for 50 cycles for high speed work and drives the camera through a built-in three speed transmission. The fourth is for hand cranking at normal speed. At the rear of the camera is a fifth drive shaft for stop motion work. A footage speedometer with a large window and generous size figures is provided. This speedometer may be removed from the camera as will. It will be apparent that this method of providing for the different cycle currents is of tremendous value, not only obviating the need for different motors, but is an additional assurance of quiet motor operation because the reduction gears are in the camera operating in oil rather than in the end bell of the motor.

"The dissolve is controlled from the rear of the camera. A convenient lever controls the mechanical dissolve which operates through a geared set that provides for three different speed changes. A dial indicator calibrated to show percentage of shutter opening is provided.

"Built into, and a part of the camera is the Fearless Automatic Film Tension control, which has proven its worth in over a year of use. This prevents film buckles by varying the tension on the take-up belt. An added feature is the Electric Circuit Breaker which instantly stops the motor in the event of a film break or at the end of the reel. It is also an added safety factor, for if the film should buckle by reason of breakage of take-up belt or for any other cause, the Circuit Breaker will instantly stop the motor and camera.

"For recording purposes the Fearless Silent Camera can be furnished with an auxiliary sound photographing aperture, at the correct distance of 19 frames from the photographic aperture, and with gears, rollers etc. necessary for recording the sound directly on the film as it passes through the camera. A Fearless Recording Photo Lamp, or any standard light valve may be substituted when it is desired to imprint the film, and the recorder amplifier and the sound record made on the same negative as the picture being photographed. This should prove a boon to newsreel cameramen and to location expeditions that are remote from electricity for in cases of sort the camera motor may be operated from the batteries that provide current for the recorder amplifier.

"The Fearless Silent Camera can be furnished for double width film or for the Fearless Wide Picture on standard 35 mm. film. Of special interest is the fact that colored motion pictures by the Multi-color system may be taken with the New Fearless Silent Camera.

"Lack of space prohibits enumerating all of the unusual features of the Fearless Silent Camera. Suffice it to say that it is the newest motion picture camera ever manufactured for the professional cameraman, and is in every sense a 1930 model camera.

Petroleum in Pictures

AN UNUSUALLY interesting four-reel film dealing with the operations of the petroleum refining industry has been prepared by the United States Bureau of Mines, Department of Commerce, and is now available to schools, churches, civic groups, etc., for screening purposes.

As an educational film this picture is outstanding, for it reveals phases of the industry that are little known and which are of unusual interest. Great care has been taken in the making of the picture so that it is really educational and interesting rather than just plain propaganda.
splitting his head with an ache, to find out that Bladdich, on
surprise charges filed by investigators sent from the firm’s New
York offices, had been indicted and arrested on charges of de-
frauding his employers of thousands of dollars, which he had
spent on a certain number of blondes, red-heads and brownettes.
It appeared, in a paragraph toward the end, that one Simon
O’Rourke had taken Bladdich’s place and plush-fitted office.
“Mebbe,” soliloquized Mannie, “this guy O’Rourke’ll gimme
back my job.”
Mannie telephoned O’Rourke. He explained to O’Rourke
who he was. “Oh—yes, yes,” yelled O’Rourke, strangely ex-
cited. Mannie thought. “We’ve been hoping to hear from
you. Be sure to see me today, won’t you?”
Dazed, Mannie said he certainly would. It was all very
odd, Mannie thought. Why should O’Rourke want to see
him? Well—chance to get the job back, Mannie considered
and so—having quite forgotten about the letter he had written
Bladdich—Mannie hurried to his hotel to get into some clean
clothes to see the new boss for a job.
At the hotel, there were two envelopes in his letter box. One
was the hotel bill, with a memorandum in red ink which began:
“Unless”— The other knocked Mannie so cold that it was
4:38 that afternoon before he recovered sufficiently to take a
taxi to O’Rourke’s office. It read, briefly, like this:
“Mr. Cass Mandell
Hotel President
Hollywood, Calif.
My Dear Mr. Mandell:
This is to advise you that Mr. Michael V. Bladdich is no
longer with this corporation, and that the undersigned has been
appointed to fill his place.
Among the material left by Mr. Bladdich when he departed.
I found a letter from you. You appear to have anticipated the
findings of our own private investigators, who have been ex-
amining Mr. Bladdich’s record and performances.
That is, however, beside the point. The purpose of this
letter is to ask you to see me at your earliest convenience. We
are about to begin production of our big feature for the year—
a war story with the working title of “MARINES ARE LIKE
THAT!” We have been seeking with very little good luck for a
dialogue writer with vocabulary, command of language, in-
tensity of imagination, and incandescence of expression to do
the material which will form a large part of the dialogue in
this production. Your letter to Mr. Bladdich leaves absolutely
no doubt that you are the man we want.
If you care to resume your connection with us at double your
former remuneration, we have a contract awaiting your signa-
ture.
(Signed) SIMON O’ROURKE.”

REELTONE Pictures Company announces they have been
licensed to use the Tanar Recording Light which was de-
veloped by Len H. Roos, A. S. C. They promise deliv-
ery of portable recorders for newsreel and industrial work in
thirty days. Those who have seen the recorder say many nice
things about it. We hope to give more about it in next issue.

Roy Davidge
Film Laboratories

Negative Developing and Daily Print
exclusively

6701 SANTA MONICA BLVD.
GRanite 3108

Lena Malena and Wyndham Standing.

Producer-Director Hughes, himself an expert licensed pilot,
had established a record for all time in motion-picture extrav-
agence in the filming of his air classic. On air scenes alone
he has expended nearly $2,000,000, and the total distance
covered in the mimic sky battles was approximately 227,000
miles. More than 20,000 extras were employed in the various
mob-scenes of the picture. Total cost of “Hell’s Angels” will
approximate $4,000,000, according to Hughes.

Harry Perry, ASC, had charge of the aerial photography,
and Tony Gaudio, ASC, was chief cameraman for the non-
flying sequences, silent and talking.

The largest air-fleet ever assembled, except by governments,
participated in the picture. The aerial squadron comprised
87 planes, including more than 40 true wartype ships. The
air-fleet included German Fokkers, British T. M’s, S. E. 5’s,
Avros, DeHavilands, Snipes, a German Gotha bomber and a
zeppelin. A total of 137 pilots, and as many mechanics,
were employed during the 18 months filming of action above
the clouds. The picture includes every stunt flyer and ex-war ace in America. A technical staff of 35 cinema-
tographers, including 26 aerial cameramen, and a staff of
12 editors and cutters, were on the Hughes’ pay-rolls during
the two years of elapsed production.

Eight separate locations were maintained for the aerial
sequences. They included the main flying base at Caddo
Field, Van Nuys; a training school camp at Inglewood; a
German field at Chatsworth; and other locations at Santa
Cruz, Encino; Ryan Field, San Diego; March Field, River-
side, and Oakland airport, Oakland, California.

At the latter airport the “Hell’s Angels” sky fleet was in
action for more than four months filming mass air-battles in
which 40 planes participated simultaneously.

The same lavish enterprise was displayed in the operations
on terra firma. A charity ball in London at war time,
screened in technicolor, has been reproduced with more than
1,000 extras supplying background and atmosphere. Another
500 extras appear in a costly German beer-garden setting,
and the same number in French cafe scenes.

More than 2,000,000 feet of celluloid were consumed by
“Hell’s Angels” cameras during the period of production.
The completed picture will be shown in 12 reels, or approx-
imately 12,000 feet.

Whether Howard Hughes will ever see a return of the
tremendous sum invested in “Hell’s Angels” is one of the
most questions in Hollywood. Many insist it can’t be done. Oth-
ers, better acquainted with the spectacular blood and guts of
filmdom’s youngest producer and director, believe he will
out-wise them all and emerge with a bigger bank-balance than
ever.

In his previous screen ventures, “Two Arabian Knights,”
“T’l racket,” and “The Mating Call,” Hughes averaged from
50 to 100 per cent profit on his investments, despite his
extravagant production methods, and despite the fact that
he paid handsome dividends to the companies which released
his output.

With “Hell’s Angels” Hughes will deal directly with the
public, leasing his own theatres and road-showing his picture
wherever movies are shown. He has already leased the George
M. Cohan theatre on Broadway for a year’s run, and will
next week lease one in Chicago, Philadelphia, Boston, Cleveland,
Detroit, San Francisco and other key centers.

Max Factor Leads

A RECENT survey of the sale of cosmetics by the Domestic
Bureau of the Los Angeles Chamber of Commerce, re-
veals the fact that ninety-six per cent of the cosmetics
used by the stars, featured players and the motion picture studio
make-up department heads are Max Factor products.

Since the earliest days of the motion picture industry, Max
Factor products have been in general use, in fact, as the discovery
of proper make-up for the screen is attributed to the cosmetic
chemical genius of Mr. Factor, there has never been used to any
real extent any other make-up but his.
Bernice Claire

IN

"SONG OF THE FLAME"

Lee Garmes, Cameraman

Percy Westmore, Make-up Artist

A FIRST NATIONAL PRODUCTION

Max Factor's Make-up

USED EXCLUSIVELY

Max Factor Make-up Studios

Highland Ave. at Hollywood Blvd., Hollywood
Tel. HO-6191
Cable Address "Facto"

Chicago Office
444 West Grand Ave.

London Office
10 D'Arblay Street

Max Factor's
Panchromatic
and
Technicolor
Make-up
for the
Screen

Other Foreign Branches
4C Her Majesty's
Arcade
67 Foochow Road
599 West Street
Benson, Smith & Co.
249 McCall St.

Sydney, Australia
Shanghai, China
Durban, S. Africa
Honolulu, T. H.
Toronto, Canada

Max Factor's
Theatrical
Make-up
for the
Stage
New Tri-Dimensional Cinematic Process Claimed

THIRD DIMENSION, or depth of perspective in standard motion picture photography, is the claim advanced by William F. Alder, Vice-President and Chief Engineer for Colorart Synchroton, Ltd. This, he claims, has been achieved without the use of special cameras, film or projection equipment, removing it from the class of laboratory experiments into the realm of practical studio matters.

The basic patents of Alder's Tri-Dimensional process were granted in 1915, but the mechanical apparatus has only recently been refined to the point of what he claims is production practicability. Its underlying principle is that of the motion picture itself—the illusion brought about by the persistence of vision. Instead of using special bi-lensed optical systems and individual viewing filters, Mr. Alder used standard apparatus throughout, adding an attachment by visual persistence. The means used to attain this end is merely the photographing of alternate frames from laterally varying positions, or, rather, angles, since the optical centre of the lens is the pivotal point. The device itself is an intricate train of gearing and compound cams built into a special tripod, and operated by a synchronous motor. An adjustment is provided which controls the angle through which the camera is moved, thereby adjusting the proportion of stereoscopy to the need of the moment.

The device was demonstrated to a gathering of press representatives, who were amazed by the naturalness of the photography. A number of interesting test scenes were shown, among them being a garden scene with rain and foliage in the far distance, back of which was a partly-hidden cottage. It was noticeable that the distance between the trees and the house was well defined, and that the house stood out with a natural depth, while the figures were distinctly defined to an unusual degree. The roundness of the bodies was particularly noticeable.

Wilky Back

Guy Wilky, A. S. C., has returned from the South Seas, where he was photographing a picture that Murnau was directing. Next month Wilky will have a special story in the Cinematographer.

Strenge Heads N. Y. Union

WALTER Strenge of Pathé has been chosen as president of the International Photographers Union, Local 644. Other new officers are: 1st Vice-Pres., Al. Wilson; 2nd Vice-Pres., Harry Wood; 3rd Vice-Pres., James Pergola; Treas., Frank Kirby; Sec., Walter Lange; Sgt. at Arms, Emil Harris. Three trustees were elected, as follows: William Steiner, Jr. (3 yrs.), L. Fiferlik (2 yrs.), Al. Gold (1 yr.)

Appointed to the Executive Board are: Geo. Folsey, Larry Williams, Charles Downs, William Miller, Carl Gregory, Burt Pike, Dan Caveli, Al. Gold, Thos. Hogan, Frank Broda, Jay Rescher, Herman Zerrenner, Herman Obrock, Ray Foster, Chas. Gilson and Frank Zucker.

700 Silent Houses

Cleveland—Fifty-two silent pictures have been secured by the Standard Film Service Co. for release to 700 silent film houses in Ohio and Kentucky.

Rudolph Heads R.C.A. Publicity

GERALD K. RUDOLPH has been appointed director of publicity for RCA Photophone, Inc., advises Charles J. Ross, vice-president. Rudolph, before coming to New York, was managing editor of a Buffalo newspaper and has been identified with the industry for the past seven years.

McNamee in Pictures

GRAHAM MCNAMEE, radio announcer for National Broadcasting Corp., has been signed by Universal to become the Talking Reporter for the company's sound newsreel. Pictures of the signing of the announcer were taken and will preface the first of Talking Reporter series in which the famous broadcaster will appear.

New Technicolor Plant

ANOTHER $1,000,000 plant, which will supplement the two other laboratories here and the two in Boston, is being erected in Hollywood by the Technicolor Corp. Work is being rushed to have the new plant in operation early next month. Eventually this plant will have a capacity of 47,000 feet of colored film daily, or about 75,000,000 feet a year.
YOU CANNOT AFFORD TO BE WITHOUT THE CINEMATOGRAPHIC ANNUAL

The Great Technical Publication of the Motion Picture Industry

Published By The AMERICAN SOCIETY OF CINEMATOGRAPHERS

First Edition Off the Press in APRIL

"What You Can't Find Elsewhere You'll Find in This Great Book." Don't Take chances on failing to get your copy. Clip the coupon below and mail at once.

AMERICAN SOCIETY OF CINEMATOGRAPHERS.
1222 Guaranty Building, Hollywood, California.
Gentlemen: Enclosed please find check (or money order) for Five Dollars ($5.00) for which please send me, postage prepaid, one copy of your Cinematographic Annual as soon as it is off the press. which date will be April, 1930.

Name __________________________ Address __________________________
City __________________________ State __________________________
Now—

RECORDION engineers have perfected a 100% Talking and Sound picture reproducer for you:

Just connect to any make of 16mm. projector. Your picture and record starts in synchronization and remains so—be it 100 or 1000 ft. of film—show after show—

and priced at only $85 (less amplifier and tubes)

PLAY THROUGH YOUR RADIO SET

The POPULAR RECORDION
MODEL R-1

consisting of projector, turntable and volume control may now be had—

at only $175 (less amplifier and tubes)

RELEASEx

R. P. 0701—400 ft., $28 with Record "THE RECORDION ORCHESTRA" Medley of Popular Hits

R. P. 0704—300 ft., $21 with Record "TOYLAND FANTASIE"
Cliff Frederickson, The Boy Accordionist

RELEASEx

R. P. 0706—200 ft., $15 with Record "COTTON PICKERS MELODY BOYS"
Singing Southland Boys

R. P. 0708—200 ft., $15 with Record "RECORDION REVUE"
Youth and Beauty on Parade

NATIONAL FILM PUBLICITY CORPORATION
Manufacturers & Licensors
311 S. Sarah Street
Saint Louis, Missouri
American Cinematographer

January, 1930

Amateur Movie Making

By WILLIAM STULL, A. S. C.

Resolutions:

NOW that Christmas is past, and New Year's at hand, those of us who have survived the horrors of Holiday hospitality and Christmas neckties are beset with the traditional spectre of New Year's Resolutions. Of course, no one has yet been known to keep a New Year's resolve, but the distracting tradition of making them still persists. One simply must resolve about something each January First. Whill, willy nilly. Keeping the resolution is quite another matter, and socially unimportant. After all, those Christmas smokes must be used up some way—and as for really climbing on the wagon—it!

Still, if one were to take New Year's resolving seriously, for a change, it wouldn't be so hard to find a few resolutions which would be helpful and even profitable to keep. Amateur Cinematographers in particular could benefit by a few well-kept cinematic resolutions. At the risk of seeming painfully obvious, I'll suggest a few here.

First: Be it resolved to, hereafter employ brains as an inseparable accessory to the use of the cinema camera. (Movie cameras are only foolproof as long as they are not foolishly operated.)

Second: Be it further resolved to master each step in technique before essaying the next one. (Walking must be learned before running, and mechanical proficiency before pictorial artistry.)

Third: Be it further resolved to diligently cultivate the art of being patient. (Cinematic haste makes wasted film and discouraged filmers.)

Fourth: Be it finally resolved as a cinematographer to so order my photographic life as to preserve and increase the good name of the craft. (Slishshod incompetence has no business behind a movie camera, where it can jeopardize the photographic reputation of the whole army of professional and amateur cinematography.)

Such a set of simple cinematic resolves, rigidly adhered to, could work wonders, even in the short space of a year. Of course they are no magic panacea, but their observance would be a great step toward success in the exacting field of cinematography.

Interiors

During the winter months, when most amateurs have little chance to use their cameras out of doors, indoor filming offers a world of inviting opportunities. Aside from the conventional types of interior scenes, with which most amateurs are familiar, there are many special effects which invite the artistic experimenter. For instance, the great range of fascinating low-key portrait effects possible with only a single lamp, or spotlight, and a reflector or two. Many interesting back-lit effects, for example, can be made with a single lamp and reflector, placing the lamp just out of the picture, to one side of, and a little behind the subject, with the reflector taking care of the front-lighting. Altering the positions of light and reflector, their heights, diffusion of one or the other, and changing the camera-anges will make possible an almost infinite variety of striking effects. The use of a mirror in the background, with the subject and lighting arranged so that the glass reflects only a few highlights from the subject, is also effective.

In all of this sort of work, a most useful accessory is the sort of a shield called in studio parlance a "nigger." It may be a narrow black screen, a foot or so wide by five or six feet high, or a small, square sheet of black-painted compo-board to be held in the hand or hung on a lamp. In either case, "niggers" are important in shielding the lens of the camera from unwanted rays from the lights.

Cine-Silhouettes

But there is also a great range of interesting effects quite apart from the more conventional ones. Perhaps the first is the cine-silhouette. This, of course, is a comparatively simple affair, involving only the use of a translucent screen of sufficient size, with a strong, even source of light behind it, and the placing of the subject or subjects in front of it, quite close, in profile. In silhouette making, it is advantageous to have particularly powerful lighting equipment, in order that the lens may be stopped down to increase the sharpness of the image to the critical point.

In addition to the true silhouette, there is also the semi-silhouette, in which the figures are sharply outlined against the light background, but have also some front lighting as well. This effect can be secured either by the use of reflectors and mirrors placed beside the camera, or by small additional lights used similarly.

What might be termed ¾ silhouettes are very effective, too, and are made by so placing the characters in relation to the light source that a little light diffuses on their faces, giving a suggestion of normal photographic relief, while the rest of the figures are in sharp silhouette. The effect can, of course, also be obtained by the careful use of small reflectors. "How far that little candle throws its beam..."

Another working device is a candle-light effect. This is simply an ordinary, one-sided, contrasty lighting, with the subject holding a lamp or candle from which the light seems to originate. It is particularly effective with children, but can also be used to good purpose in the amateur photo-play. The method, of course, is simple, merely planning the action so that the candle remains in relatively the same location, and then placing the light source just outside the picture, at the same elevation and general position as the candle. The light may be either diffused or not, as the individual may prefer, although a light diffusion is probably best.

Still another simple indoor lighting effect is that of firelight. This can be made by placing either a lamp or a magnesium flare in the fireplace, and grouping the actors around as may be desired, but always keeping one (or a piece of furniture) between the 'fire' and the lens. These effects can be made either with

(Continued on Page 42)
Question: Why do my pictures of moving automobiles and galloping horses almost always come out blurred? Can it be avoided?
Answer: This is probably due to the fact that you are shooting them from the side, and too near; therefore, in the comparatively long period of exposure (about 1/30 sec.) the image moves across the film, making the blur you notice. In professional cameras the shutter opening can be adjusted, thereby making it possible to reduce the exposure to a short enough period to stop the motion. In amateur cameras this cannot be done, so the amateur must contrive to reduce the motion of the image across the film. The simplest way to do this is to shoot from a different angle, making the moving subject come more or less head-on into the picture. If this is not practicable, or the scene must be shot from the side, the further the camera is from the object, the smaller the blurring movement will be. Alternatively, if one must be close up, panning round with the subject, keeping it as nearly as possible in the centre of the picture, will also help.

Question: How can I prevent the reflections of my lights in polished furniture, the nickel work of autos, etc.?—A. T. B., Philadelphia.
Answer: Rub the offending article over with a piece of putty just before shooting. It can be easily removed afterwards.

Question: Can I get trick effects with my Victor? For instance, pouring water—or beer—out of a bottle into a glass, and then having it return into the bottle?—I. D. B., Milwaukee, Wis.
Answer: Easily. In the first place, use a tripod. Then photograph the first part of your scene in the normal manner. Then stop the camera, and replace it on the tripod, but inverted (there are clamps made to hold cameras in this position), and re-take the action. When the film comes back from the finishing station, cut out the second part of the scene, splicing it in again right side up. In order to prevent too great a 'jump' in the scene where the two strips are joined together, it is well to make sure that in both cases the lens occupies about the same position, with relation to ground and subject.

Question: For interior shots by artificial light, which is faster, ortho or pan film?—A. E. G., Vancouver, B. C.
Answer: It depends on the source of light. For white flame arcs, ortho stock is appreciably faster; for incandescent lights, pan is faster.

Q. Is there any possibility of selling 16mm films for news reel use?—V. N. P., New Orleans.
A. In the case of exceptional shots, there is such a possibility. There have been several instances of cine amateurs being on the spot when some unexpected and important event occurred, and subsequently selling their films to one or another of the big newsreel firms, who in such cases are glad to get any sort of film for an exclusive 'story'. Of course the photographic quality of a picture suffers in the enlargement, but in the case of an exclusive subject that is overlooked. Now, too, that sound newsreels are so much the style, the amateur's chances are considerably lessened, but by no means wiped out; if the subject is important enough, and exclusive, it will still sell. If need be, it could be run silent, or sound 'dubbed' to it. But in all dealings with newsreel outfits remember that ample footage and speed of delivery are the keystones. Seconds count in this work, so don't be afraid to use the fastest means of transport available in every case.

INFORMATION FOR AMATEURS

Amateurs—Send your problems to this department and we will solve them.
Your Makeup Problems

By MAX FACTOR
[Internationally Known Authority on Makeup]

DEAR MR. FACTOR:—I would appreciate your answering a few questions which have been bothering me for some time. Is your Masque for the eyelashes harmless? If so, why is it so painful? I am a dark brunette with brown-grey eyes. Do you think I could wear blue eye shadow? The brown seems to have no effect. What is the best means of removing make-up? What cream is used by the profession?

Thanking you so very much for your attention. I am,

R. S.

ANSWER:—Max Factor’s Masque is entirely harmless. It is made on a pure soap base, and any soap, regardless of how pure it is, smarts when it gets in the eyes. I think the grey eye-shadow would be a good color for you, as it has a bluish cast when worn. Make-up is removed with Max Factor’s Cleansing Cream, or the new Max Factor’s Liquid Cleansing Cream. Both these creams are used by the profession.

DEAR MR. FACTOR:—For evening, should one wear considerable make-up, or is it better to have a pale appearance? I am wearing my hair long, now, just knotted at the back, and parted in the middle, and wonder if it would be better not to wear any make-up. I am very dark, with a clear skin.

I. E.

ANSWER:—There are very few skins so perfect that they are not improved by a little make-up. Even if you wish to appear pale, use Max Factor’s Society Powder. However, the use of color in the cheeks, and lip rouge give the face a more animated appearance. For evening wear, Max Factor’s Liquid Whitening, which comes in similar shades to the Face Powder, gives a particularly beautiful effect. Use Raspberry rouge.

DEAR MR. FACTOR:—Do you just use plain red rouge to give the cheeks a very red, jolly look? I am a boy, 18 years old, quite plump for my height and want to play a comedy part which calls for red cheeks. Also—how can I put white whiskers on my chin and make them stay?

ROB.

ANSWER:—Use Max Factor Moist Rouge No. 1, and Dry rouge No. 18. White whiskers are made from white CrepeHair and stuck on with spirit gum. Ask for full directions when you buy the crepe hair—I have published a special chart on making whiskers, etc.

DEAR MR. FACTOR:—Is there any way, other than diet, to make the face look less round? Is there any way with make-up that I can change the “fat” look about my face? I am blonde, hazel eyes, and weigh about 154 to 5 feet 4 inches.

M. E.

ANSWER:—The use of dry rouge will effectively alter the appearance of a full face. Place on cheeks rather toward the ears, and down toward the jaw-bone. This will appear to throw the sides of the face in shadow. Dress the hair off the forehead, and well down on the sides of the face.

—ENERGIZE YOUR FILM:

Use Kleena-Fylm Process
It cleans, rejuvenates, restores and maintains pliability in old film. A non-inflammable fluid easy to apply. Clearer projection. Guaranteed. At dealers, or postpaid, $3.50.

522 Fifth Ave. KLEENA-FYLM CORP. New York, N. Y.
Pacific Coast Distributors Western Pacific Bldg.
Craig Movie Supply Co. Los Angeles, Calif.

AT LAST!
Real Professional ReflectorS for
Home Movie Makers.

Hollywood Professional Accessories Co.
1121 1/2 Lillian Way Hollywood, California

These reflectors have been in use in professional production for the past four years.

LIGHT IN WEIGHT:
One man can easily carry a complete set of eight.

PORTABLE:
Fit lengthwise inside any standard automobile.

EFFICIENT:
Excellent reflecting surfaces in either silver or gold finish.

THREE SIZES:

"Long Shot"
18x40—Closed—36x40 open.
Ten Dollars Each

"The Medium"
18x24—Closed—36x24 open.
Five Dollars

"The Close Up"
8x18—Closed—16x18 open.
Two Fifty

Same prices—gold or silver finish. Set Suggested
Two Each Finish—large—$40
Two—one each finish—medium—10
Two—one each finish—small—5

$55

Complete set of 8 shipped prepaid anywhere in U. S. A. upon receipt of $50.00.
Professional Amateurs

Lon Chaney Trains His Cameras on Celebrities and Cougars "Between Pictures"

By William Stull, A. S. C.

Undoubtedly one of the most popular and highly respected of screen personalities, Lon Chaney is universally recognized as the Dean of American actors. Living and working as he does in a community where even mediocre must be outstanding, preeminence such as his is indeed a difficult achievement. Before the camera his diverse and powerful characterizations have won him international fame, while among his associates a kindly personality and a keen mind have won unstinted affection and respect. Yet despite the success which has been his, and the outstanding position into which it has thrust him, Lon Chaney has dared to remain himself. Despite the widespread interest which his brilliant achievements have aroused, his private life has been resolutely kept a closed book to all save a few intimates. Therefore it is hardly known, even among his associates in the studio, that Lon Chaney is privately one of the most enthusiastic of amateur cinematographers.

Yet such is the case. For a number of years Mr. Chaney has spent much of his spare time making personal movies, until he now has as large and varied an individual library as there is in Hollywood. In it are to be found intimate personal glimpses of the many famous people who have visited the Metro-Goldwyn-Mayer Studios, informal off-the-set scenes of his studio associates, familiar family records, and reel upon reel of animated nature-studies painstakingly made on his many hunting and fishing trips between pictures at the studio.

It is of these nature films that Mr. Chaney is proudest. Essentially a man's man, he had ranged over most of the west on hunting and fishing expeditions, when the acquisition of his first movie camera—a Filmo—gave a new interest to the sport. After all, the greatest attraction the sport holds for most of us is the skill and patience needed to secure a passable 'bag,' and Mr. Chaney after his first few experiments with a camera found that the skill required to bag an animal with a gun was as nothing compared to the skill needed to bag him with a camera. Therefore he bent his energies to the problem of mastering this difficult field of cinematography, to such good purposes that he has today what is probably the finest collection of wild-life films in Hollywood. It includes excellent shots of practically every important Western species from Mountain Lions to Humming-birds. According to him, though Humming-birds sound rather tame as a film subject when compared to Cougars, they take quite as much skill to film successfully, due to their small size and ultra-rapid movement; and, as he has only recently completed a complete reel of nothing but these tiny creatures, he should know. He has also had remarkable success in the photography of his many fishing trips, which, as most cameramen learn, present very considerable and unique problems to cine enthusiasts.

In addition to his original Filmo, Mr. Chaney also uses a Victor camera, whose lens-turret and tri-speed movement he has found invaluable for his animal films. For stills he uses a Graflex. "But then," he says, "I don't give the poor thing much of a chance. I usually carry both of my movie cameras with me, and between the two of them I seldom have time to think of stills until it's too late to get any!"

"How did I happen to start making personal movies? Well, you know how many world-famous visitors we have had here at the studio; a few years ago I decided that since I had the chance, I'd like to have a real, personal record of these folks. Of course movies were the logical form for the record to take—so I bought my Filmo. Like most other amateurs I found that I'd gotten into something far more interesting than I had expected, so I've kept on. I've tried almost everything in the line of personal movies, but I think that I get the greatest pleasure out of my hunting films, and, of course, my animated album, to which I'm steadily adding.

"As for saying anything in the way of advice to the amateurs, why, I'm just an amateur myself: the technicians who write in such magazines as The American Cinematographer have certainly told them all I could tell and more. One thing, though, my experience prompts me to say: that is, use a tripod! My years of work in the studios before the cameras of the industry's best cinematographers have impressed me with the importance of a good, firm support for motion picture cameras. Therefore, in my own filming, wherever I can, I, too, use a substantial tripod, and I've found it my most valuable accessory. Personally, I use a big Crown still-camera tripod, with one of Fred Hoeftner's pan-and-tilt heads on it. I'll admit it's a big, clumsy-looking outfit, but it is rock-steady—which is more than can be said for a lot of lighter ones. One other word, too, particularly to picture people: personal movie-taking can be the most fascinating hobby in the world for us, but we can easily rush it to death, too. There is no reason on earth why we should rush out and try to shoot everything in sight the first week or so we own a camera. If we do, we're likely to forget it entirely the third or fourth week. Taken intelligently and conservatively, though, there is no more instructive nor more enjoyable sport for any of us than amateur movie-making.

Still another feature of Mr. Chaney's amateur activities, but one which he modestly forbears from mentioning, is his success as a missionary of the amateur film movement. As his Filmo outfit was one of the first to appear among the film colony, it would be difficult to even hazard a guess at the number of famous film people whom he has either directly or indirectly interested in his hobby, but even his reticence cannot conceal the fact that he has

Chaney in action as an Amateur Cinematographer, with his Filmo alongside Henry Sharp, A. S. C.
Why Wheels Seem to Turn Backward in Motion Pictures

An Explanation That Will Answer Hundreds of Questions That Reach The Editor's Desk.

By PAUL H. ALLEN, A. S. C.

I BELIEVE that the one question that I have answered more than any other since I have been in the motion picture business is, "Why do automobile wheels turn backward on the screen?" The reason why is simple, but the answer without a diagram isn't so easy. But I believe that by referring to the illustrations on this page it will be quite plain, and then all the readers can tell all their friends, and there you are.

Of course you all know that "moving pictures" don't really move, but are just a series of individual snap shots showing the successive positions of moving objects. But it is just these successive positions which may easily produce the illusion of "wheels turning backward," which quite naturally are going in the right direction. This fact can be illustrated by the diagram (Figure 1) of four-spoked wheels rotating at such a speed that after one picture of the film has been exposed the spoke "A" has turned around just enough to show "A" at the position of "B" when the next picture is exposed. It is then quite evident that in a case of this kind, if the spoke and camera keep turning at constant speeds when the picture is projected upon the screen it will appear to be standing perfectly still.

Again, the wheels on fast-moving cars often appear as if they were moving backward. This would happen if the spoke "A" had been revolved so fast when it was photographed such the interval between one exposure and the next the wheel revolved all the way around from "A" to "B" (Figure 2). When the next successive exposure was made the spoke appeared at "C," and so on.

When this film is projected on the screen the spokes will seem to run backward. No matter how many spokes there are in the wheel, it is evident that the effect on each one will remain the same, and the entire wheel will appear to turn backward at the same speed as that of each spoke.

The so-called mystery is nothing more than an optical illusion.

How can you avoid having it happen in your films?

Several ways, if you must show an automobile being driven across the screen in your film, try and select one with disc or wire wheels. Or shoot the car from the front or rear in such a position that the wheels do not show on the screen. Or let them turn as they may!
Storing and Handling Film
(Continued from Page 20)
thus attaining a higher temperature.

The chemical reactions which take place in nitrocellulose differ with its mode of combustion. flameless, active or explosive. Fortunately, in the last two methods of combustion the reactions are much more complete than in flameless combustion. They do not yield nitrous fumes and but little carbon monoxide.

Little or no attention has been given to the use of nitrocellulose as used in films to undergo spontaneous decomposition which might eventually result in spontaneous combustion, and no instance of such an occurrence has been brought to notice in this connection. But such occurrences have been very frequent with such nitrocelluloses as are used for smokeless powder and also as are sent into the market in the form of collodion cotton for use in the manufacture of colloids as used in photography and in pharmacy.

The decomposition referred to has been found due to the fact that the physical structure of cotton, from which cellulose nitrates are manufactured, is such as to make it difficult, during the purification processes, to remove from the cellulose nitrates the very last traces of free acid. Yet if but a minute quantity of free acid remains in the nitrocellulose it reacts to decompose the nitrocellulose, producing as a result more free acid, and these reactions progress autocatalytically with the evolution of heat until a considerable mass of the nitrocellulose is involved and the temperature has reached the point of ignition when fire or explosion takes place. Provision is made in the case of smokeless powder and some other substances produced from cellulose nitrates to reduce or prevent this decomposition by adding to the mass a neutralizing agent, such as diphenylamine, to remove the free acid products as they are formed, and this procedure has given a measure of protection.

At least 75 years ago it had become the established practice in placing long staple pyroxylin, or collodion cotton, to pack it in cardboard cartons and, in this method of packing the nitrocellulose has been observed to remain for years undecomposed, while if the nitrocellulose in these cartons were transferred to tightly stopped bottles it soon underwent spontaneous decomposition. Another cellulose nitrate product which has frequently given rise to disasters through undergoing spontaneous decomposition as packed in tightly closed containers is compressed military guncotton. Yet with this, as with the collodion cotton, it has been repeatedly demonstrated that, if the blocks of dry guncotton are exposed to the air out of contact with direct sunlight, they keep materially unchanged through years.

Another characteristic of cellulose nitrates little referred to is their capacity to acquire static charges through friction. Yet this is very apparent when one runs the hand through a mass of granulated white smokeless powder. It is demonstrated by rubbing a piece of moving picture film when it will attract to itself small bits of paper and other light objects. Many ignitions of inflammable and combustible substances have been due to the development and discharge of static charges originating in friction on moving parts, but experimental demonstration of the phenomena is attended with many difficulties and rarely succeeds. It is significant to find in the newspaper accounts of a recent disaster that observers reported seeing 'the first explosion occur in a pile of chemicals near one of the polishing machines' and that the only fatality was that of a man 'found unconscious near a film polishing machine'.

Another feature of film disasters is the nitrous fumes.... the brownish-red fumes especially produced during the flameless combustion of the films. The nitrogen oxides as evolved from the decomposing film are NO (or N O \textsubscript{2}) (or N O\textsubscript{3}). The NO as set free is a colorless gas, but, on coming in contact with the air, it promptly combines with oxygen from the latter to form NO\textsubscript{2} gas which is brownish-red in color. It is possible that, through the reactions of these nitrogen oxides with the oxygen of the air they encounter, other oxides, such as NO\textsubscript{3} and NO\textsubscript{4}, are also formed in varying proportions. Further, the NO\textsubscript{2} reacts with oxygen and water present in the air, or that produced in the burning, and the NO\textsubscript{3} and NO\textsubscript{4} react also with water present to form the highly corrosive nitrous and nitric acids.

Though NO is but slightly soluble in water, NO\textsubscript{2}, NO\textsubscript{3}, and NO\textsubscript{4}, the acids formed from them, are quite soluble in water, and since NO readily forms NO\textsubscript{2} on contact with air, it is a simple matter to remove "nitrous fumes" from the atmosphere by spraying the atmosphere with water. Furthermore, a proper supply of water will quench fires in nitrocellulose films.
The Kinamo S.10

The amateur movie enthusiasts of the United States will enjoy the special feature of the little Zeiss-Ikon Kinamo S.10, a thoroughly practical 16 mm. outfit, which is the smallest existing movie camera made. Kinamo S.10 is distributed by Carl Zeiss, Inc., 485 Fifth Avenue, New York City.

The Kinamo S.10 is equipped with a Carl Zeiss 2.7 Tesser lens. The camera is small enough to be held easily in one hand and, with the eye applied to the internal view finder, may be satisfactorily braced in this way. Threading is quick and effectively accomplished with the aid of a special container which simplifies placing the film in the correct position and eliminates threading the take-up reel. Feed and take-up sprocket are arranged in remarkably compact form. A special feature is the movable feed sprocket by means of which the size of the loops may be changed after threading. The film magazines are furnished loaded with 33 feet (10 meters) of 16 mm. Eastman Kodak safety film, orthochromatic or panchromatic, a very convenient length which enables the amateur to take a few complete "shots" using all of the film and thereby getting quick developing service.

After the film is exposed it is automatically wound in the light-tight container ready for shipment to the nearest Eastman Kodak processing station. A novel and useful indicator shows at a glance just how far the spring motor has run down and when it is necessary to rewind. By using this device, the operator may appear in the picture for a given length of time, after which the camera will stop automatically. One full winding of the spring-motor exposes 13 feet of film. The design of the Kinamo S.10 is such that it is exceptionally easy to keep the gate free from the emulsion deposits. All working parts are enclosed in a dust-proof housing and no need exists for cleaning the mechanism.

RCA in Alaska

With presentation of talking pictures at the Libery, Ketchikan, the first of seven RCA installations for Alaska has been made. It is announced by RCA Photophone, Inc.

Editorial Board Named for Cinematographic Annual

President John F. Seitz, of the American Society of Cinematographers, has announced the following as the members of the editorial board of the Cinematographic Annual: Paul Allen, John Arnold, Herford T. Cowling, Emery Huse, Victor Milner, William Stull and Ned Van Buren.

This board will assist Mr. Seitz and Hal Hall, editor, in the work of editing and compiling the Annual, which it is expected will be the most important technical book that has been published in connection with the motion picture industry. One of the most outstanding and representative groups of authorities in their various lines is preparing the editorial content for this book. In this group are the most noted men of the industry.

Fires actively under way in compressed military guncotton even have been extinguished with water applied to them.

A set of regulations governing the storage of nitrocellulose films has been drafted by the National Fire Protection Association, Central Street, Boston, Mass.
AMATEURS

IF YOU HAVE NOT ORDERED YOUR COPY
OF THE
Cinematographic
Annual
Do Not Delay Longer

This will be the most valuable publication ever produced in connection with photography. What you can't find elsewhere you will find in this book to be published by

The American Society of Cinematographers

Tear off and mail today

AMERICAN SOCIETY OF CINEMATOGRAPHERS,
1222 Guaranty Bldg., Hollywood, Calif.

Gentlemen: Enclosed please find check (or money order) for Five Dollars ($5.00) for which please send me, postage prepaid, one copy of your Cinematographic Annual as soon as it is off the press, which date will be April, 1930.

Name

Address

City State

Amateur Movie Making
(Continued from Page 35)

the fire as the sole source of light, or with a few reflectors or diffused lamps to give a relieving front light.

Night Sports

Magnesium flares, however, are primarily intended for exterior use, for they are rather too closely related to Fourth-of-July fireworks to be safe indoors. Used outside, however, they offer great possibilities. What picturegoer, for instance, has not seen and enjoyed the perennial newsreel shots of night wintersports, such as tobogganing, figure-skating, etc., made with the aid of those handy torches? With only a few flares, the amateur camerist can do quite as well, himself. Place one, for instance, on a toboggan coming down a sporty course where the camera is able to follow for some distance. Around curves, through trees, and so on, or place both flare and camera on the toboggan, with perhaps another flare, managed by an assistant, in the ground at some particularly thrilling curve. If the assistant can use a camera at the same time, so much the better. Similarly, attaching a flare to a night-flying skijumper would undoubtedly give an unexcelled spectacle—but the problem of persuading a skier to attempt it would, I fear, be beyond most of us!

And—the Real Bright Lights

Now that super-speed lenses are becoming so much a part of every amateur’s equipment, artificial lighting equipment for exterior night scenes is by no means always a necessity. Amateurs in the larger cities can easily take advantage of the lighting kindly furnished by the municipality and the local merchants. Street scenes by the ordinary street-lights are now familiar parts of many amateur libraries, but they are newly attractive when a camerist is lucky enough to be able to shoot them after a heavy fall of soft snow. In such cases, even the possession of relatively slow lens equipment can benefit, for the fresh snow is an excellent reflector, and between it and the half-speed movement on the camera, even Staid, old-fashioned F:3.5 lenses acquit themselves surprisingly well.

Free Book on Society Make-up by Max Factor

T hose women who admire the faultless beauty and alluring charm of the picture stars now have the opportunity of learning how they have mastered the art of make-up to such a perfect degree.

Mr. Max Factor, international authority on make-up, has prepared a small book, on society make-up, for the especial use of women not of the screen. It is an unusual book with a wealth of information that should be invaluable to all women who wish to know how to use their make-up correctly. This book is free for the asking. Either write care of The Cinematographer, or direct to Max Factor, at his Highland Avenue Studio, Hollywood, and the book will be mailed you.

High Ireland Duty

TALKING PICTURE equipment imported into Ireland has been made subject to a customs duty of 33 1-3 per cent according to advices reaching the M. P. Division of the Department of Commerce. This will advance the price of apparatus sold to Irish exhibitors and is regarded as a move to discourage the exploitation of talking films in Ireland.

New Sound Device

KINOPLAY CORPORATION makes its entry into the synchronized equipment field with a new sound-on-film apparatus intended to serve the needs of exhibitors who desire a low-priced equipment. Kinoplay, according to its manufacturers, will reproduce film recorded through either variable or fixed densities. Another feature claimed for the apparatus is that, in running silent pictures, the film does not have to be threaded entirely through the sound-on-film mechanism. The film passes into the lower magazine on a sliding roller without additional sprocket wear.

Nice—The Casino de Paris here has been opened as a talking picture house.
Of Interest To Amateurs

Mother’s Day

Next month’s issue of the Cinematographer will contain an offering which we feel will be of unusual merit and practical use. February is a long way from May, but the offering will be a practical scenario or working script for a picture built around Mother. Most people give flowers on Mother’s Day. But we suggest that a film entitled, “Mother’s Day”, be given them in addition to flowers this year. Loretta K. Dean, who has contributed several interesting articles to the Cinematographer has prepared this scenario and we would be pleased to hear from all our readers who use it. Watch the February issue. If you like the idea, we will run a scenario each month. The Editor.

Around the World

William F. Douglas of Elmhurst, Ill., is one of the greatest boosters of the 16 mm camera. The reason is that he made a trip around the world last year and shot 4000 feet of film with his DeVry. Now he is making the same trip every once in awhile—only in the easy chair of his living room.

Modern Ages

The Universal Motion Picture club of Paterson, N. J., is making an ambitious photoplay entitled, “Modern Age”. Walter Nowatka is directing and handling the camera.

Interior Shots

Now that winter has brought its long evenings to home movie makers in most of the United States and snow is heaped up in huge drifts outdoors, it is the time to make those indoor shots you used to dream of last summer. Maybe next winter Grandma may not be with you, so get out that Sunny Twin lamp and your camera and make the shots that in years to come will be treasured by you.

Lighting Book

If you haven’t written to Westphalen of Chicago for his free book on interior lighting, we’d advise that you do it now. There is much you will learn in the little book prepared by this expert on amateur lighting.

The World’s Fastest Plate

Cine Amateurs, who are also devotees of ultra-speed still photography, will be interested to learn that the enterprising English firm of Ilford, Ltd., have placed upon the market what is undoubtedly the most amazing of all their celebrated creations in ultra-fast plates. The astonishing speed of 1400 H. and D. is their claim for their new Golden Iso-Zenith emulsion, which despite its extreme speed is reputed to be remarkably fine-grained and acceptably isochromatic. Since the speed of the average amateur film is between 300 and 400 H. and D., the terrific speed of the new emulsion is almost inconceivable.

New Dallmeyer Lens

We learn from a British contemporary that the famous Optical Speed Merchants, the Messrs. Dallmeyer, of London, have again surpassed themselves. Their latest creation is a one-inch cine lens working at the amazing aperture of F:0.99, which, they point out, is twelve times as fast as the familiar F:3.5 fitted to most amateur cameras. The lens is now regularly on the British market, being supplied in standard mounts fitting Filmo, Victor and Ensign cameras, at the comparatively reasonable price of 20 pounds sterling. At the present time it is probably not yet available in America, but no doubt it soon will be.

Winter Clouds In “Pan”

The best way of getting good cloud effects is through the use of Cine-Kodak Panchromatic Safety Film and a filter. However, a filter is not essential. and “Pan” will give surprising results without one.

New High School Club

Organized for the study of Cinematography, a club has been started at the John C. Fremont High School, Los Angeles. C. A. Bach sponsors the club which shoots 400 feet of film each term using a professional Bell & Howell. Sound is also studied. Fifteen members comprise the present roster.

The Deardorff Commercial Camera

Made this picture from the street level

Most Difficult work, made EASY WORK

Time is money—In time alone the DEARDOFF will save its cost very quickly.

Compact; Light Weight.

Sturdy construction.

Used by the leading commercial and view photographers of this country.

Illustrated folder on request.

If your dealer does not handle this Camera, order direct from

L. F. Deardorff & Sons

451 N. Racine Avenue

Chicago
Principles and Processes of Photography in Natural Colors

(Continued from Page 24)

remained in contact a short time, the film support is stripped off, the operation usually being carried out under water. The yellow
tissue is ordinarily mounted first, then the blue-green, and then
the magenta. Some of the finest examples of this process produced
in America are those of J. W. Allison of New York.

In the original Raylo process introduced in 1923, three ex-
posures were made successively and automatically on one plate
through the three primary filters, yielding a negative. The
method of printing gave any number of 5 by 7 inch pictures on
paper and is a novel application of the color process. A sheet of
film base coated with three patches of pigmented gelatin was
structured in a frame, exposed to the different images of the nega-
tive as shown in Fig. 12, and then developed in the usual way in
hot water. By means of a special registering device, the final
superimposition of the three negatives was claimed to be accomplished
with ease. More recently the inventor of the Raylo process, Mr.
H. C. J. Deeks, has supplied prepared pigmented acetocellulose
sheets in three colors for printing from any set of three-color
negatives. Each sheet is coated with a light sensitive silver halide
emulsion containing the pigment. After exposure and develop-
ment in a tanning developer, the relief image is washed off in hot
water and the silver image is removed by bleaching and fixing.
The prints on these pigmented tissues are then transferred to a
paper support.

In the Òzobrome method, bromide prints made from the origi-
inal three-color negatives are brought in contact with the respective
color tissues soaked a short time previously in a bichromate-
ferricyanide-bromide bath, and the bromide process transferred
on the tissue which now bears the image of the print. The tissues are
then developed, fastened to a temporary support, brought into
register, and finally transferred to a permanent paper support.

(iii) Imbibition Processes. Color prints by the imbibition
process are made by starting with a blank sheet of gelatin coated
paper and causing the coating to take up successively or "imbibe"
dyes from color images from the "print plate" covered with
unhardened gelatin. Any number of prints may be made from
one group of print plates. The dyes used in this process will
only stain soft-gelatin. In another imbibition process, the bluelike
Shepherd, the reverse is true since it depends on dyes which will
stain hardened gelatin. Very pleasing results may be obtained
with both two and three-color imbibition processes.

(iv) Relief Processes. A novel wash-off relief process using
imbibition to prepare the final print was introduced in Germany
in 1925 under the name "Jos-pe." Printing plates are prepared
from a set of three-color negatives by projection onto glass
plates coated with a gelatino-bromide emulsion. The plates are
exposed through the back and developed in a developer which
differently hardens the gelatin according to the amount of silver
image formed. A relief image is obtained by washing the print
out plates in hot water. Prints are made from these simplified
since the printing plates are quite transparent.

(v) Bleach-out Methods. An ingenious method for
changing a color transparency into a color print which unfortunate-
ly has thus far had very little commercial success, is the bleach-
out process first worked out by J. H. Smith in 1895 and known
as "Uticolor." This process had been suggested in 1867 by
Du Haunon and Charles Cros from purely theoretical reasoning.
It depends on the property certain dyes possess of bleaching out
when exposed to specific wave-lengths of light. Paper is coated
with an intimate mixture of three such dyes, red, yellow, and blue.
The color transparency is placed in contact with the paper and
by virtue of the bleaching properties of the dyes, the paper is
changed into a color print. Unseen bleaching, distortion from
heat, and the fugitiveness of the dyes are some of the difficulties
encountered. Although these limitations are serious, this method
offers great possibilities if it is ultimately worked out satisfactorily.

(vi) Three and Four Color Photo-mechanical Reproduction.
The most outstanding use of color photography for many years
has been the making of three-color reproductions in newspapers
and magazines by photo-mechanical methods. Two methods are
used, depending upon the accessibility of the subject, (a) the Ind-
direct and (b) the Direct methods.

In the former, three-color separation negatives are prepared,
transparencies are made from these negatives, and screen negatives
on wet collodion plates are finally obtained from the transparencies
by interposing in the camera in front of the sensitive photographic
plate, a glass plate evenly ruled with a fine cross line screen (about
150 lines to the inch).
The Direct method avoids the making of the first negative and the transparency since the three screen negatives are made by direct photography of the colored subject. For each separate screen negative, the red, blue, and green, the screen is rotated making each pattern at an angle of 22½ degrees to 30 degrees from the others. When the lines of the screen cross at smaller angles, a disagreeable pattern or moire is produced in the final printing. Engraved copper color plates are prepared from each color separation negative and printed by inking up with suitable greasy ink pigments.

(b) Two Color Subtractive Processes. Several two-color processes for preparing color prints have been worked out using most of the methods described under three-color processes. Very pleasing results have been produced with two-color imbibition and by carbon transfer methods.

(To be Continued Next Month)

Develops Cin-ex Camera

Detroit—A motion picture camera known as the Cin-ex, by which a variety of bodily functions such as the motion of the lungs and movements of the heart and intestines may be observed, has been developed by Dr. Jarre of Grace Hospital here.

Sonora Home Talkies

TALKING PICTURES for the home, reproduced by a machine that also can be used as an ordinary radio receiver, have been demonstrated by the Sonora Products Corporation in its private projection room in the Sonora building. The apparatus, invented by Sonora engineers, is said to be the first of its kind. It uses ordinary 16 mm. films, capable of throwing a picture five feet square, while the talk is reproduced by a synchronized record.

Quantity production is expected to get under way shortly with the facilities of different picture studios being engaged for the making of the films.

New Seats for Talkies

AMONG the many problems created by talking pictures for theatre builders and operators is the question of seats with a back made of such material that it will absorb and not throw back the sound waves. In legitimate theaters, it has been found, a number of empty seats will noticeably affect the echo problem, but theater men get around this by using seats that were scientifically upholstered. This practice now is being adopted generally in talker theaters, with a thick velour being favored.

New Camera Device

A DEVICE designed to control six cameras simultaneously, with rheostatic starting to eliminate jamming of the motors, has been invented by William Johnson, chief electrical engineer at Radio. Control of markers, which show the starting and stopping of the player’s action, as well as governing stop lights and signal bells which give warning throughout the entire studio that quiet must prevail, are other features.

Device is especially adapted to photographing large sets where more than two cameras are used to get all the action from different angles at the same time.

Non-Stop Projector

K LANGFILM in association with A. E. G., powerful German electrical trust, soon will introduce to the trade in Germany a new non-stop projector, designed to solve the problem of intermittent or projections which causes the damage of sprocket holes, according to a report to the M. P. Division of the Department of Commerce, at Washington.

The A. E. G. projector makes use of a series of mirrors, in which, it is claimed, 100 percent of the light is transmitted, none being wasted by the interception of a shutter. Each of the mirrors turn on its axis as the film travels through the camera so as to keep the image of each picture reflected in the center of the mirror, which moves into place one after the other.

The projector already has been installed in several theaters for experimental purposes and an attempt now is being made to market them on a wholesale basis.

Berlin—Two animal pictures, “A Day With an Indian Elephant,” and “From Gnat to Elephant,” have been completed by UFA for educational purposes.
FOR BETTER WORKMANSHIP

SUPERIOR ENGRAVING CO.

Telephone HE 8149
Hollywood, Calif.
1606 Cahuenga Ave.

Zinc Etchings, Copper and Zinc
Half-Tones, Color Work
Designing, Electrotypes,
Mats, etc.

New Hollywood Lab.
Leonard Pool and Bud Hooper, of San Francisco, have established a new film laboratory in the building recently vacated by Smith and Aller, distributors for du Pont film. It is being operated as the Afient Laboratories, catering to general production work.

Paris
Motion pictures showing actual fire scenes at various stages are being collected by the Paris fire department to be used in teaching firemen how to combat these emergencies and also in educating the public along the lines of prevention.

London
S. M. Eisenstein, the Russian director, has concluded a course of lectures on the technique of motion pictures given under the auspices of the Film Society.

Paris
Plans for the production of three talking pictures are announced by Mme. Marie Louise Iribe. "Father Lancelot's Three Daughters" will be the first.

The King of Jazz
(Continued from Page 6)

And then Whiteman came to silent pictures.
"I believe there will be some great silent pictures made in the future," he declared. "Some stories lend themselves to silent pictures, and they should be made silent. Then, there are people like Chaplin who should stick to silent drama. I hate to think of Chaplin turning to talkies. He is so magnificent in pantomime: a master at it; and I think sound would spoil a lot of the wonderful charm of his work."
Again he referred to cinematography with more boosts for the cameraman and their work. "Marvelous, simply marvelous," he declared. "What they can't do with a camera cannot be done."

PATENTS

PROTECT YOUR IDEA!
Write Freely, sending Data of your Invention, for full advice.
Write for "Proof of Invention" folder mailed free.

TRADE-MARKS REGISTERED
We give genuine personal service.

Established—Experienced Thirty Years

E. E. VROOMAN & CO.
201 Atlas Building, Washington, D. C.
Mention American Cinematographer when writing.
PHOTOGRAPHIC EQUIPMENT CLEARING HOUSE

CLASSIFIED ADVERTISING

RATES: Four cents a word. Minimum charge one dollar per insertion. All copy must be prepaid and must reach us before the fifteenth of the month preceding publication.

WANTED—MOTION PICTURE CAMERAS

WANTED—For cash, Bell & Howell, Mitchell, Akley Standard cameras and equipment. Write with full particulars and lowest price. Movie Camera Co., Lamington Road, Bombay 4, India.

FOR SALE—CAMERAS

FOR SALE—2 complete Mitchell High Speed Outfits, $3500.00 each. Special price for purchaser of both. Write or phone Editor of CINEMATOGRAPHER.

FOR SALE—Akley Camera, 2, 6, 12 inch lenses and finders to match, four magazines, carrying cases, Mitchell quick-release legs. Camera has been overhauled and is in good mechanical condition. Price $700.00. E. U. Detrick, A. S. C., or 951 No. Spaulding Ave., Hollywood, California.

FOR SALE OR RENT—First Class Akley Outfit complete. Phone GR-4274, or write Dan B. Clark, A. S. C. office.

FOR SALE—Bell & Howell Cameras, 170 degree; three Lenses F 2.5, Iris, Mitchell tripod, four magazines, steel cases. Park J. Ries, 1152 N. Western Ave., GRanite 4185.

FOR SALE—Thibhammer Iris, 40mm, 50mm, 75mm F 3.5. Lenses in B & H mounts. Park J. Ries, 1152 N. Western Ave., GRanite 4185.

FOR SALE—One 5x7 Press Grafex Camera, with 8½-inch F4.5, Zeiss Texas lens; one 5x7 cut film magazines; one roll holder; one focusing back; and tripole locking carrying case. Price, $95.00. All in new condition. Fred A. Parrish, 2326 Colorado Ave., Colorado Springs, Colo.

FOR SALE—Bell & Howell camera complete. Also Bell & Howell trunk, Baby tripod and Mitchell tripod, 40mm., 50mm. and 75mm. Astro lenses; Carl Zeiss 50mm. Mitchell Finder. Five Bell & Howell magazines; carrying cases for all, and miscellaneous equipment. Phone GL-7258 or GR-4274.

FOR SALE—170-degree Bell & Howell Camera. Choice of four focal length lenses. New 4-inch Iris and Matte box. 4 Magazine, metal carrying cases, light tripod. A. B. Smith, 124 So. Flower St., Los Angeles.

FOR SALE—Bell & Howell camera completely equipped with B. & H. tripod with Mitchell legs, 4 mag., matte box, Mitchell finder, gaudes, lenses, etc. Excellent condition. $600 complete. 7160 Santa Monica Blvd. GRanite 7111.

FOR SALE—MISCELLANEOUS

FOR SALE OR TRADE—Three Cooper-Hewitt side banks 6 tubes each. Also two twin Whel arc lamps. One Whel overhead dome arc; lot of electrical switch: boxes; cables, etc. All like new. Inventory $2,750 list. $800.00 cash takes list; or will trade for B. & H. or Mitchell camera and outfit. Address Lens. care ASC, Chicago Office, 3668 So. Michigan Ave., Chicago, Ill.

FOR SALE—Two slightly used Mitchell Matt boxes at $84.00 per set. Call Chas. Glouner at Universal Studios. HEmet 3131.

FOR SALE—Model D Moreoletta film viewing machine—new condition. Wm. Stull, GL-8775 or care A. S. C.

FOR RENT—CAMERAS

FOR RENT—2654 Longwood Ave., 1 Bell & Howell completely equipped for Sound. Phone Empire 0224.

FOR RENT—Two Bell & Howell cameras, Mitchell tripods, large finders, all F/2.3 lenses, 1000 ft. magazines for B. & H. Also Cinemotor and friction head for Akley work. Frank Coenner, 6273 Selma Ave., HOLLY 3540.

FOR RENT—Eight Bell & Howell cameras, fast lenses, large finders, Mitchell tripods. Park J. Ries, 1152 N. Western Ave., GRanite 4185.

FOR RENT—Akley camera outfit, Mitchell tripod, 6 magazines, equipped up to 6 inch lenses. Park J. Ries, 1152 N. Western Ave., GRanite 4185.

FOR RENT—Two Bell & Howell Cameras, equipped with Speed movements for slow motion or sound work, fast lenses, large finders. Mitchell tripods 1000 ft. magazines. Park J. Ries, 1152 N. Western Ave., GRanite 4185.

FOR RENT—3 Mitchell speed cameras equipped for sound work. All Mitchell cameras supplied with two 1000 ft. magazines if desired at regular camera rental rates. J. R. Lockwood, 1108 N. Lillian Way. GRanite 3177.

FOR RENT—Mitchell Speed Camera, equipped for Sound. Phone Don B. Keyes, HE-1841.

FOR RENT—MISCELLANEOUS

FOR RENT—Two Bell & Howell Cinemotors, with counters and batteries. Park J. Ries, 1152 N. Western Ave. GR-1185.

FOR RENT—Mitchell Gear Box with crank and shaft. Mitchell Motor; 1000 ft. magazines. Phone Donald B. Keyes, HE-1841.

January, 1930 American Cinematographer Forty-seven

If

You Haven't Reserved Your Advertising Space in the CINEMATOGRAPHIC ANNUAL — DO IT NOW!!
Complete Roster at Date of Publication

OFFICERS

<table>
<thead>
<tr>
<th>Officer</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>John F. Seitz</td>
<td>President</td>
</tr>
<tr>
<td>Victor Milner</td>
<td>First Vice-President</td>
</tr>
<tr>
<td>Arthur Miller</td>
<td>Second Vice-President</td>
</tr>
<tr>
<td>Charles G. Clarke</td>
<td>Third Vice-President</td>
</tr>
<tr>
<td>John Arnold</td>
<td>Treasurer</td>
</tr>
<tr>
<td>Ned Van Buren</td>
<td>Secretary</td>
</tr>
</tbody>
</table>

BOARD OF GOVERNORS

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philip E. Rosen</td>
</tr>
<tr>
<td>Homer Scott</td>
</tr>
<tr>
<td>Fred W. Jackman</td>
</tr>
<tr>
<td>James Van Trees</td>
</tr>
<tr>
<td>John W. Boyle</td>
</tr>
<tr>
<td>Arthur Webb, General Counsel</td>
</tr>
</tbody>
</table>

PAST PRESIDENTS

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaetano Gaudio</td>
</tr>
<tr>
<td>Daniel B. Clark</td>
</tr>
</tbody>
</table>

HONORARY MEMBERS

Thomas A. Edison, Orange, N. J.
George Eastman, Rochester, N. Y.
Albert S. Howell, Chicago
Stumar, Chas.—Berlin, Germany.
Steinreich, Harold—Bombay.
Sharp, Henry—United Artists,
Dong, Fairbanks.
Schniederman, Geo.—Fox Movietone.
Scott, Homer A.—
Seitz, John F.—First National.
Snyder, Edward J.—Metropolitan.
Shearer, Douglas G.—M-G-M.
Stall, Wm.—
Smith, Jack—Bangkok, Siam.
Smith, Jack C.—
Tolhurst, Louis H.—M-G-M.
Tappenbruck, Hatto—Fox.
Van Trees, James—
Van Enger, Chas.—Fox.
Van Rossem, Walter J.—
Wagner, Sidney C.—Fox.
Walker, Joseph—Fox.
Walker, Vernon L.—Warner Bros.
Wrighley, Dewey—Metropolitan.
Wyckoff, Alvin—United Artists.
Wells, Conrad—Fox.
Weston, Harold—
Whitman, Phil H.—
Wilky, L. Guy—
Warrenton, Gilbert—Universal.
Williams, Frank D.—
Westberg, Fred—United Artists.
Young, Jack R.—M-G-M.
Only in E A S T M A N

T R U E panchromatic balance.... unsurpassed latitude.... a tough base that resists the wear and tear of release printing......This combination of important qualities is obtainable only in Eastman Panchromatic Negative, Type 2, worthy successor to the original, revolutionary Eastman "Pan."

EASTMAN KODAK COMPANY
ROCHESTER, NEW YORK

J. E. Brulatour, Inc., Distributors
New York Chicago Hollywood
WE ARE PLEASED to announce that we are now in production on our 70 MM. Mitchell Camera and are in a position to accept orders from the profession for these cameras.

This is the same type camera manufactured by us and now in use in the production of the Fox-Grandeur pictures.

MITCHELL CAMERA CORPORATION

665 N. Robertson Blvd. West Hollywood, Calif.
Cable address “MITCAMCO” Phone OXford 1051